The Role of Machine Learning in Enhancing Battery Management for Drone Operations: A Focus on SoH Prediction Using Ensemble Learning Techniques

被引:0
|
作者
Cetinus, Buesra [1 ]
Oyucu, Saadin [2 ]
Aksoz, Ahmet [3 ]
Bicer, Emre [1 ]
机构
[1] Sivas Univ Sci & Technol, Fac Engn & Nat Sci, Battery Res Lab, TR-58010 Sivas, Turkiye
[2] Adiyaman Univ, Fac Engn, Dept Comp Engn, TR-02040 Adiyaman, Turkiye
[3] Sivas Cumhuriyet Univ, Mobilers Team, TR-58050 Sivas, Turkiye
来源
BATTERIES-BASEL | 2024年 / 10卷 / 10期
关键词
UAV data analysis; machine learning; regression models; Ensemble Learning; Li-ion; OF-CHARGE ESTIMATION; LITHIUM-ION BATTERIES; GATED RECURRENT UNIT; HEALTH ESTIMATION; NEURAL-NETWORK; STATE; TEMPERATURE;
D O I
10.3390/batteries10100371
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study considers the significance of drones in various civilian applications, emphasizing battery-operated drones and their advantages and limitations, and highlights the importance of energy consumption, battery capacity, and the state of health of batteries in ensuring efficient drone operation and endurance. It also describes a robust testing methodology used to determine battery SoH accurately, considering discharge rates and using machine learning algorithms for analysis. Machine learning techniques, including classical regression models and Ensemble Learning methods, were developed and calibrated using experimental UAV data to predict SoH accurately. Evaluation metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) assess model performance, highlighting the balance between model complexity and generalization. The results demonstrated improved SoH predictions with machine learning models, though complexities may lead to overfitting challenges. The transition from simpler regression models to intricate Ensemble Learning methods is meticulously described, including an assessment of each model's strengths and limitations. Among the Ensemble Learning methods, Bagging, GBR, XGBoost, LightGBM, and stacking were studied. The stacking technique demonstrated promising results: for Flight 92 an RMSE of 0.03% and an MAE of 1.64% were observed, while for Flight 129 the RMSE was 0.66% and the MAE stood at 1.46%.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242
  • [42] Development of a simulation result management and prediction system using machine learning techniques
    Lee, Ki Yong
    Suh, Young-Kyoon
    Cho, Kum Won
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (01) : 75 - 96
  • [43] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [44] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ishan Ayus
    Narayanan Natarajan
    Deepak Gupta
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 2437 - 2447
  • [45] An Ensemble Machine Learning Model for Enhancing the Prediction Accuracy of Energy Consumption in Buildings
    Ngoc-Tri Ngo
    Anh-Duc Pham
    Thi Thu Ha Truong
    Ngoc-Son Truong
    Nhat-To Huynh
    Tuan Minh Pham
    Arabian Journal for Science and Engineering, 2022, 47 : 4105 - 4117
  • [46] An Ensemble Machine Learning Model for Enhancing the Prediction Accuracy of Energy Consumption in Buildings
    Ngoc-Tri Ngo
    Anh-Duc Pham
    Thi Thu Ha Truong
    Ngoc-Son Truong
    Nhat-To Huynh
    Tuan Minh Pham
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (04) : 4105 - 4117
  • [47] Employee Attrition Prediction using Nested Ensemble Learning Techniques
    Alshiddy, Muneera Saad
    Aljaber, Bader Nasser
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (07) : 932 - 938
  • [48] Prediction of spontaneous imbibition in porous media using deep and ensemble learning techniques
    Mahdaviara, Mehdi
    Sharifi, Mohammad
    Bakhshian, Sahar
    Shokri, Nima
    FUEL, 2022, 329
  • [49] An ensemble learning approach for diabetes prediction using boosting techniques
    Ganie, Shahid Mohammad
    Pramanik, Pijush Kanti Dutta
    Malik, Majid Bashir
    Mallik, Saurav
    Qin, Hong
    FRONTIERS IN GENETICS, 2023, 14
  • [50] Prediction of Water Level Using Machine Learning and Deep Learning Techniques
    Ayus, Ishan
    Natarajan, Narayanan
    Gupta, Deepak
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (04) : 2437 - 2447