The Role of Machine Learning in Enhancing Battery Management for Drone Operations: A Focus on SoH Prediction Using Ensemble Learning Techniques

被引:0
|
作者
Cetinus, Buesra [1 ]
Oyucu, Saadin [2 ]
Aksoz, Ahmet [3 ]
Bicer, Emre [1 ]
机构
[1] Sivas Univ Sci & Technol, Fac Engn & Nat Sci, Battery Res Lab, TR-58010 Sivas, Turkiye
[2] Adiyaman Univ, Fac Engn, Dept Comp Engn, TR-02040 Adiyaman, Turkiye
[3] Sivas Cumhuriyet Univ, Mobilers Team, TR-58050 Sivas, Turkiye
来源
BATTERIES-BASEL | 2024年 / 10卷 / 10期
关键词
UAV data analysis; machine learning; regression models; Ensemble Learning; Li-ion; OF-CHARGE ESTIMATION; LITHIUM-ION BATTERIES; GATED RECURRENT UNIT; HEALTH ESTIMATION; NEURAL-NETWORK; STATE; TEMPERATURE;
D O I
10.3390/batteries10100371
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study considers the significance of drones in various civilian applications, emphasizing battery-operated drones and their advantages and limitations, and highlights the importance of energy consumption, battery capacity, and the state of health of batteries in ensuring efficient drone operation and endurance. It also describes a robust testing methodology used to determine battery SoH accurately, considering discharge rates and using machine learning algorithms for analysis. Machine learning techniques, including classical regression models and Ensemble Learning methods, were developed and calibrated using experimental UAV data to predict SoH accurately. Evaluation metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) assess model performance, highlighting the balance between model complexity and generalization. The results demonstrated improved SoH predictions with machine learning models, though complexities may lead to overfitting challenges. The transition from simpler regression models to intricate Ensemble Learning methods is meticulously described, including an assessment of each model's strengths and limitations. Among the Ensemble Learning methods, Bagging, GBR, XGBoost, LightGBM, and stacking were studied. The stacking technique demonstrated promising results: for Flight 92 an RMSE of 0.03% and an MAE of 1.64% were observed, while for Flight 129 the RMSE was 0.66% and the MAE stood at 1.46%.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04) : 1103 - 1116
  • [2] Performance prediction of roadheaders using ensemble machine learning techniques
    Sadi Evren Seker
    Ibrahim Ocak
    Neural Computing and Applications, 2019, 31 : 1103 - 1116
  • [3] Crop Yield Prediction Using Ensemble Machine Learning Techniques
    P. Kuppan
    V. Vishwa Priya
    SN Computer Science, 5 (8)
  • [4] Prediction of Prostate Cancer using Ensemble of Machine Learning Techniques
    Oyewo, O. A.
    Boyinbode, O. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (03) : 149 - 154
  • [5] Enhancing Machine Learning based QoE Prediction by Ensemble Models
    Casas, Pedro
    Seufert, Michael
    Wehner, Nikolas
    Schwind, Anika
    Wamser, Florian
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS), 2018, : 1642 - 1647
  • [6] Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning
    Zhao, Yunpeng
    Goulias, Dimitrios
    Saremi, Setare
    COMPUTERS AND CONCRETE, 2023, 32 (03) : 233 - 246
  • [7] Performance prediction of impact hammer using ensemble machine learning techniques
    Ocak, Ibrahim
    Seker, Sadi Evren
    Rostami, Jamal
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 80 : 269 - 276
  • [8] Enhanced slope stability prediction using ensemble machine learning techniques
    Yadav, Devendra Kumar
    Chattopadhyay, Swarup
    Tripathy, Debi Prasad
    Mishra, Pragyan
    Singh, Pritiranjan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536
  • [10] Machine learning Approach to Battery Management and Balancing Techniques for Enhancing Electric Vehicle Battery Performance
    Bennehalli, Basavaraju
    Singh, Lavakush
    Stephen, D. Silas
    Prasad, P. Venkata
    Mallala, Balasubbareddy
    Rao, A. Purna Chandra
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 885 - 892