An equidistributed grid-based second-order scheme for a singularly perturbed Fredholm integro-differential equation with an interior layer

被引:3
作者
Manebo, Wubeshet Seyoum [1 ]
Woldaregay, Mesfin Mekuria [1 ]
Dinka, Tekle Gemechu [1 ]
Duressa, Gemechis File [2 ]
机构
[1] Adama Sci & Technol Univ, Dept Appl Math, Adama, Ethiopia
[2] Jimma Univ, Dept Math, Jimma, Ethiopia
关键词
Discontinuous source term; Grid equidistribution; Singular perturbation; Adaptive grid; Uniform convergence; Finite difference scheme; Fredholm integro-differential equation; NUMERICAL-METHOD; SELECTION; MESHES;
D O I
10.1016/j.amc.2023.128398
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we introduce and evaluate the effectiveness of the central finite difference coupled with a composite trapezoidal rule on adapted meshes in solving a second-order singularly perturbed Fredholm integro-differential equation with a discontinuous source term. A grid equidistribution technique was employed to address the challenge posed by the perturbation parameter in classical numerical methods. Our approach demonstrated superior precision compared to existing schemes in the literature and achieved second-order uniform convergence.
引用
收藏
页数:11
相关论文
共 50 条
[41]   A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer [J].
Musa Cakir ;
Yilmaz Ekinci ;
Erkan Cimen .
Computational and Applied Mathematics, 2022, 41
[42]   A numerical approach for solving nonlinear Fredholm integro-differential equation with boundary layer [J].
Cakir, Musa ;
Ekinci, Yilmaz ;
Cimen, Erkan .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06)
[43]   Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations [J].
Cakir, Musa ;
Gunes, Baransel .
GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (02) :193-203
[44]   A finite-difference method for a singularly perturbed delay integro-differential equation [J].
Kudu, Mustafa ;
Amirali, Ilhame ;
Amiraliyev, Gabil M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 308 :379-390
[45]   A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation [J].
Iragi, Bakulikira C. ;
Munyakazi, Justin B. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (04) :759-771
[46]   A second-order finite difference scheme for a class of singularly perturbed delay differential equations [J].
Cen, Zhongdi .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (01) :173-185
[47]   A performance assessment of an HDG method for second-order Fredholm integro-differential equation: existence-uniqueness and approximation [J].
Karaaslan, Mehmet Fatih .
TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (05) :2269-2281
[48]   A posteriori error estimation for a singularly perturbed Volterra integro-differential equation [J].
Jian Huang ;
Zhongdi Cen ;
Aimin Xu ;
Li-Bin Liu .
Numerical Algorithms, 2020, 83 :549-563
[49]   A posteriori error estimation for a singularly perturbed Volterra integro-differential equation [J].
Huang, Jian ;
Cen, Zhongdi ;
Xu, Aimin ;
Liu, Li-Bin .
NUMERICAL ALGORITHMS, 2020, 83 (02) :549-563
[50]   An almost second-order robust computational technique for singularly perturbed parabolic turning point problem with an interior layer [J].
Sahoo, Sanjay Ku ;
Gupta, Vikas .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 211 :192-213