Pore-scale direct numerical simulation of forced convection heat transfer in minichannel with open-cell porous copper ribs

被引:0
|
作者
Wang, Liangfeng [1 ,2 ]
Huang, Shufeng [1 ]
Fan, Yijie [2 ]
机构
[1] East China Univ Technol, Sch Mech & Elect Engn, Nanchang 330013, Peoples R China
[2] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Minichannel; Heat transfer; Pore-scale; PRESSURE-DROP; FLOW; DESIGN; FOAMS; SINK;
D O I
10.1016/j.icheatmasstransfer.2024.108231
中图分类号
O414.1 [热力学];
学科分类号
摘要
Compact minichannels are particularly suitable for heat dissipation of electronic devices, open-cell porous copper has perspective applications in convection heat transfer. This work proposes a minichannel with open-cell porous copper ribs, and its forced convection heat transfer performance was direct numerically investigated at pore-scale. Applying micro-CT technology and Mimics software, the three-dimensional structure of an open-cell porous copper with 90 PPI and 0.88 porosity was reconstructed, Pore-scale simulation provides a clear visualization of the flow characteristics within open-cell porous copper rib. The results indicate that streamlines are disordered, and velocity vectors are randomly distributed in three-dimensional space. The spatial network structure causes significant flow disturbance and disrupts the laminar flow state of fluid. The open-cell porous copper rib minichannel exhibits higher heat transfer capacity compared to the solid rib minichannel. Nusselt number increases by 1.9-4.4 times within Reynolds number ranges from 107.9 to 968.8, and pump power decreases by 65 % compared to solid rib minichannel. In general, the open-cell porous copper rib minichannel demonstrates superior overall performance, with the performance evaluation factor PEC ranging from 1.05 to 2.2. Constructing a minichannel with open-cell porous copper provides a reference for developing highperformance minichannels.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Pore-scale direct numerical simulation of fluid dynamics, conduction and convection heat transfer in open-cell Voronoi porous foams
    Sepehri, Emad
    Siavashi, Majid
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 137
  • [2] Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam
    Sun, Mingrui
    Hu, Chengzhi
    Zha, Ligui
    Xie, Zhiyong
    Yang, Lei
    Tang, Dawei
    Song, Yongchen
    Zhao, Jiafei
    CHEMICAL ENGINEERING JOURNAL, 2020, 389
  • [3] Pore-scale numerical simulation of convection heat transfer in high porosity open-cell metal foam under rotating conditions
    Yang, Kun
    Liu, Kangyuan
    Wang, Jiabing
    APPLIED THERMAL ENGINEERING, 2021, 195 (195)
  • [4] Pore-scale direct numerical simulation of steam methane reforming (SMR) for hydrogen production in open-cell porous catalytic foam
    Barokh, Hamed
    Siavashi, Majid
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 1294 - 1308
  • [5] Improved flow boiling characteristics in minichannel with open-cell porous ribs
    Wang, Liangfeng
    Luo, Xiaoping
    Zhang, Jinxin
    APPLIED THERMAL ENGINEERING, 2024, 239
  • [6] Numerical simulation of convection heat transfer in a plate channel with sintered copper porous ribs
    Lu, Xinwei
    Yang, Dezhi
    Cao, Wenjiong
    Zhou, Zhaoyao
    ADVANCED DESIGNS AND RESEARCHES FOR MANUFACTURING, PTS 1-3, 2013, 605-607 : 1350 - 1355
  • [7] Pore-Scale Simulation on Pool Boiling Heat Transfer and Bubble Dynamics in Open-Cell Metal Foam by Lattice Boltzmann Method
    Qin, Jie
    Xu, Zhiguo
    Ma, Xiaofei
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (01):
  • [8] Significance of the natural convection to the heat transfer of porous media: A pore-scale study
    Xuan, Zi-Hao
    Fang, Wen -Zhen
    Lu, Yu-Hao
    Yang, Chun
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222
  • [9] Pore-Scale Numerical Investigation of Pressure Drop Behaviour Across Open-Cell Metal Foams
    de Carvalho, T. P.
    Morvan, H. P.
    Hargreaves, D. M.
    Oun, H.
    Kennedy, A.
    TRANSPORT IN POROUS MEDIA, 2017, 117 (02) : 311 - 336
  • [10] Pore-scale conjugate heat transfer analysis of turbulent flow over stochastic open-cell metal foams
    Alruwaili, W.
    Jadidi, M.
    Keshmiri, A.
    Mahmoudi, Y.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 202