Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

被引:0
|
作者
Zhou J. [1 ]
Xu H. [1 ]
Zhang Z. [1 ]
Lu J. [1 ]
Guo W. [1 ]
Li Z. [1 ]
机构
[1] School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan
来源
Computer Systems Science and Engineering | 2023年 / 46卷 / 02期
关键词
BiGRU; BiLSTM; CNN; multi-head attention mechanism;
D O I
10.32604/csse.2023.036419
中图分类号
学科分类号
摘要
Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or a simple network combination cannot obtain rich characteristic knowledge of fraudulent phone texts relatively. Therefore, a new model is proposed in this paper. In the fraudulent phone text, the knowledge that can be learned by the model includes the sequence structure of sentences, the correlation between words, the correlation of contextual semantics, the feature of keywords in sentences, etc. The new model combines a bidirectional Long-Short Term Memory Neural Network (BiLSTM) or a bidirectional Gate Recurrent United (BiGRU) and a Multi-Head attention mechanism module with convolution. A normalization layer is added after the output of the final hidden layer. BiLSTM or BiGRU is used to build the encoding and decoding layer. Multi-head attention mechanism module with convolution (MHAC) enhances the ability of the model to learn global interaction information and multi-granularity local interaction information in fraudulent sentences. A fraudulent phone text dataset is produced by us in this paper. The THUCNews data sets and fraudulent phone text data sets are used in experiments. Experiment results show that compared with the baseline model, the proposed model (LMHACL) has the best experiment results in terms of Accuracy, Precision, Recall, and F1 score on the two data sets. And the performance indexes on fraudulent phone text data sets are all above 0.94. © 2023 CRL Publishing. All rights reserved.
引用
收藏
页码:2277 / 2297
页数:20
相关论文
共 50 条
  • [1] Using recurrent neural network structure with Enhanced Multi-Head Self-Attention for sentiment analysis
    Leng, Xue-Liang
    Miao, Xiao-Ai
    Liu, Tao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (08) : 12581 - 12600
  • [2] Using recurrent neural network structure with Enhanced Multi-Head Self-Attention for sentiment analysis
    Xue-Liang Leng
    Xiao-Ai Miao
    Tao Liu
    Multimedia Tools and Applications, 2021, 80 : 12581 - 12600
  • [3] EEG-Based Emotion Recognition Using Convolutional Recurrent Neural Network with Multi-Head Self-Attention
    Hu, Zhangfang
    Chen, Libujie
    Luo, Yuan
    Zhou, Jingfan
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [4] A Multi-Head Convolutional Neural Network with Multi-Path Attention Improves Image Denoising
    Zhang, Jiahong
    Qu, Meijun
    Wang, Ye
    Cao, Lihong
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 338 - 351
  • [5] Improving CRNN with EfficientNet-like feature extractor and multi-head attention for text recognition
    Dinh Viet Sang
    Le Tran Bao Cuong
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 285 - 290
  • [6] Hierarchical Hybrid Neural Networks With Multi-Head Attention for Document Classification
    Huang, Weihao
    Chen, Jiaojiao
    Cai, Qianhua
    Liu, Xuejie
    Zhang, Yudong
    Hu, Xiaohui
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2022, 18 (01)
  • [7] Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network
    Cheng, Shuyu
    Liu, Yingan
    SENSORS, 2023, 23 (07)
  • [8] A Graph Neural Network Social Recommendation Algorithm Integrating the Multi-Head Attention Mechanism
    Yi, Huawei
    Liu, Jingtong
    Xu, Wenqian
    Li, Xiaohui
    Qian, Huihui
    ELECTRONICS, 2023, 12 (06)
  • [9] Geological information prediction for shield machine using an enhanced multi-head self-attention convolution neural network with two-stage feature extraction
    Qin, Chengjin
    Huang, Guoqiang
    Yu, Honggan
    Wu, Ruihong
    Tao, Jianfeng
    Liu, Chengliang
    GEOSCIENCE FRONTIERS, 2023, 14 (02)
  • [10] Sentiment Analysis of Text Based on Bidirectional LSTM With Multi-Head Attention
    Long, Fei
    Zhou, Kai
    Ou, Weihua
    IEEE ACCESS, 2019, 7 : 141960 - 141969