Aerogels for sustainable CO2 electroreduction to value-added chemicals

被引:0
|
作者
Yan, Shenglin [1 ,2 ]
Mahyoub, Samah A. [3 ]
Cui, Yanran [1 ,2 ]
Wang, Qiong [1 ,2 ]
Li, Zhenglong [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, State Key Lab Biobased Transportat Fuel Technol, Hangzhou 310058, Peoples R China
[2] Inst Zhejiang Univ Quzhou, Div Biobased Chem, Quzhou 324000, Peoples R China
[3] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Dhahran 31261, Saudi Arabia
关键词
Aerogels; CO; 2; electroreduction; High surface area; Local pH; Grain boundary; Synergistic effect; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; EFFICIENT; COPPER; CONVERSION;
D O I
10.1016/j.mtsust.2024.101038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide electrochemical reduction (CO2ER) affords an appealing pathway for transforming discarded CO2 to fuels and economic chemicals. Various nanocatalysts have been used for CO2ER, of which porous catalysts have attracted widespread attentions because of their large electrochemically active surface area, large number of pores for molecule transportation, and high local pH. Aerogels (including carbon-based aerogels and metallic aerogels), as a new class of porous catalysts, have been applied to CO2ER in recent years because of their high electrical conductivity (to reduce overpotential), three-dimensional porous structure and intrinsic hydrophobicity (to inhibit parasitic hydrogen evolution reaction, HER). In this article, we reviewed latest progresses toward aerogels for CO2ER, including (1) synthesis strategies of carbon-based aerogels and metallic aerogels; (2) innovations in aerogels design, such as heteroatom doping and metal incorporation in carbon-based aerogel, creating grain boundaries, regulating Cu0-Cu+ interfaces, and optimizing synergistic effect in metal aerogels; and (3) structural properties of aerogel catalysts to enhance CO2ER performance. Finally, we discuss the challenges, possible solutions and future directions for further development of aerogels in CO2ER.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Current status on catalytic conversion of greenhouse gas CO2 to value-added chemicals
    Wang, R. (ree_wong@hotmail.com), 1600, China Coal Society (38):
  • [22] Transformation of CO2 to Value-Added Materials
    Khoo, Rebecca Shu Hui
    Luo, He-Kuan
    Braunstein, Pierre
    Hor, T. S. Andy
    JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2015, 3 (1-2)
  • [23] Abiotic–Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels
    Jiansheng Li
    Yao Tian
    Yinuo Zhou
    Yongchao Zong
    Nan Yang
    Mai Zhang
    Zhiqi Guo
    Hao Song
    Transactions of Tianjin University, 2020, 26 (04) : 237 - 247
  • [24] Hydrogenation of CO2 into Value-added Chemicals Using Solid-Supported Catalysts
    Aktary, Mahbuba
    Alghamdi, Huda S.
    Ajeebi, Afnan M.
    Alzahrani, Atif S.
    Sanhoob, Mohammed A.
    Aziz, Md. Abdul
    Nasiruzzaman Shaikh, M.
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (16)
  • [25] Bimetallic materials as catalysts for photocatalytic CO2 reduction to value-added chemicals: A review
    Tang, Kexin
    Zhang, Ziyi
    Zhou, Dongxu
    Xu, Jingwen
    Cui, Haopeng
    Li, Fei
    Zhang, Xiaodong
    Lei, Jianqiu
    Tang, Liang
    Liu, Ning
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 356
  • [26] Electrocatalytic Reactions for Converting CO2 to Value-Added Products: Recent Progress and Emerging Trends
    Masoumi, Zohreh
    Tayebi, Meysam
    Tayebi, Mahdi
    Lari, S. Ahmad Masoumi
    Sewwandi, Nethmi
    Seo, Bongkuk
    Lim, Choong-Sun
    Kim, Hyeon-Gook
    Kyung, Daeseung
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (12)
  • [27] Direct and Oriented Conversion of CO2 into Value-Added Aromatics
    Wang, Yang
    Gao, Weizhe
    Kazumi, Shun
    Li, Hangjie
    Yang, Guohui
    Tsubaki, Noritatsu
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (20) : 5149 - 5153
  • [28] Thermodynamics and electron transfer mechanisms of CO2 bioelectroconversion to value-added chemicals: A state-of-the-art review
    Zhen, Guangyin
    Zhang, Zhongyi
    Wang, Jiandong
    Cai, Teng
    Wang, Na
    Zhuo, Guihua
    Lu, Xueqin
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 189 : 454 - 466
  • [29] Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction
    Li, Xiaohu
    Angelidaki, Irini
    Zhang, Yifeng
    WATER RESEARCH, 2018, 142 : 396 - 404
  • [30] Abiotic-Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels
    Li, Jiansheng
    Tian, Yao
    Zhou, Yinuo
    Zong, Yongchao
    Yang, Nan
    Zhang, Mai
    Guo, Zhiqi
    Song, Hao
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (04) : 237 - 247