Distribution-free prediction intervals with conformal prediction for acoustical estimation

被引:0
作者
Khurjekar, Ishan [1 ]
Gerstoft, Peter [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
GEOACOUSTIC INVERSION; SOURCE LOCALIZATION; NETWORK; NUMBER;
D O I
10.1121/10.0032452
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.
引用
收藏
页码:2656 / 2667
页数:12
相关论文
共 50 条
[31]   Arrival information-guided spatiotemporal prediction of transportation hub passenger distribution [J].
Cheng, Long ;
Cai, Xinmei ;
Lei, Da ;
He, Shulin ;
Yang, Min .
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2025, 195
[32]   Mode decomposition based large margin distribution machines for sediment load prediction [J].
Hazarika, Barenya Bikash ;
Gupta, Deepak .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
[33]   Performance Analysis of Time Series Deep Learning Models for Climate Prediction in Indoor Hydroponic Greenhouses at Different Time Intervals [J].
Eraliev, Oybek ;
Lee, Chul-Hee .
PLANTS-BASEL, 2023, 12 (12)
[34]   Some clustering-based exact distribution-free k-sample tests applicable to high dimension, low sample size data [J].
Paul, Biplab ;
De, Shyamal K. ;
Ghosh, Anil K. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 190
[35]   Prediction interval soft sensor for dissolved oxygen content estimation in an electric arc furnace [J].
Blazic, Aljaz ;
Skrjanc, Igor ;
Logar, Vito .
APPLIED SOFT COMPUTING, 2024, 167
[36]   Common distribution discrepancy knowledge distilling: A new out-of-distribution generalization framework for machinery RUL prediction [J].
Qian, Quan ;
Chen, Xuezhong ;
Chen, Jingdong ;
Qin, Yi .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 237
[37]   Cloud Free Line of Sight Prediction for Low Earth Orbit Optical Satellite Networks [J].
Lyras, Nikolaos K. ;
Kourogiorgas, Charilaos I. ;
Panagopoulos, Athanasios D. .
INTERNATIONAL CONFERENCE ON SPACE OPTICS-ICSO 2018, 2018, 11180
[38]   Experimental investigation and prediction of free fall jet scouring using machine learning models [J].
Salmasi, Farzin ;
Sihag, Parveen ;
Abraham, John ;
Nouri, Meysam .
INTERNATIONAL JOURNAL OF SEDIMENT RESEARCH, 2023, 38 (03) :405-420
[39]   MLSolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning [J].
Lim, Hyuntae ;
Jung, YounJoon .
JOURNAL OF CHEMINFORMATICS, 2021, 13 (01)
[40]   Distribution-Agnostic Probabilistic Few-Shot Learning for Multimodal Recognition and Prediction [J].
Wang, Di ;
Xian, Xiaochen ;
Li, Haidong ;
Wang, Dong .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 :1941-1957