Distribution-free prediction intervals with conformal prediction for acoustical estimation

被引:0
作者
Khurjekar, Ishan [1 ]
Gerstoft, Peter [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
关键词
GEOACOUSTIC INVERSION; SOURCE LOCALIZATION; NETWORK; NUMBER;
D O I
10.1121/10.0032452
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Acoustical parameter estimation is a routine task in many domains. The performance of existing estimation methods is affected by external uncertainty, yet the methods provide no measure of confidence in the estimates. Hence, it is crucial to quantify estimate uncertainty before real-world deployment. Conformal prediction (CP) generates statistically valid prediction intervals for any estimation model using calibration data; a limitation is that calibration data needed by CP must come from the same distribution as the test-time data. In this work, we propose to use CP to obtain statistically valid uncertainty intervals for acoustical parameter estimation using a data-driven model or an analytical model without training data. We consider direction-of-arrival estimation and localization of sources. The performance is validated on plane wave data with different sources of uncertainty, including ambient noise, interference, and sensor location uncertainty. The application of CP for data-driven and traditional propagation models is demonstrated. Results show that CP can be used for statistically valid uncertainty quantification with proper calibration data.
引用
收藏
页码:2656 / 2667
页数:12
相关论文
共 50 条
[21]   Estimation and prediction of motor load torque applied to electrical submersible pumps [J].
Ferreira Machado, Andre Paulo ;
Resende, Cassius Zanetti ;
Cavalieri, Daniel Cruz .
CONTROL ENGINEERING PRACTICE, 2019, 84 :284-296
[22]   Unsupervised framework for depth estimation and camera motion prediction from video [J].
Yang, Delong ;
Zhong, Xunyu ;
Gu, Dongbing ;
Peng, Xiafu ;
Hu, Huosheng .
NEUROCOMPUTING, 2020, 385 :169-185
[23]   Label-free prediction of cell painting from brightfield images [J].
Cross-Zamirski, Jan Oscar ;
Mouchet, Elizabeth ;
Williams, Guy ;
Schonlieb, Carola-Bibiane ;
Turkki, Riku ;
Wang, Yinhai .
SCIENTIFIC REPORTS, 2022, 12 (01)
[24]   ForecastNet Wind Power Prediction Based on Spatio-Temporal Distribution [J].
Peng, Shurong ;
Guo, Lijuan ;
Huang, Haoyu ;
Liu, Xiaoxu ;
Peng, Jiayi .
APPLIED SCIENCES-BASEL, 2024, 14 (02)
[25]   Vertical Offset-Distance Estimation and Threat Level Prediction of Vibrations With DAS [J].
Wu, Huijuan ;
Lu, Hao ;
Yang, Siqi ;
Wang, Yufeng ;
Wang, Chaoqun ;
Rao, Yunjiang .
IEEE ACCESS, 2020, 8 :177245-177254
[26]   A novel temperature prediction method in complex indoor environments based on parameter estimation [J].
Wang, Zhi ;
Yang, Junqing ;
Chen, Erkui ;
Shen, Shitong .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024,
[27]   Probabilistic prediction of post-earthquake rubble distribution range for masonry structures [J].
He, Yuhan ;
Zhai, Changhai ;
Wen, Weiping ;
Zhang, Cheng .
JOURNAL OF BUILDING ENGINEERING, 2024, 95
[28]   Soil Moisture Distribution Prediction Based on UWB and Improved Kriging Interpolation Method [J].
Nie, Zhechuan ;
Han, Jiachen ;
Li, Minglu ;
Chen, Peng ;
Liang, Jing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
[29]   A Transformer-Embedded Multi-Task Model for Dose Distribution Prediction [J].
Wen, Lu ;
Xiao, Jianghong ;
Tan, Shuai ;
Wu, Xi ;
Zhou, Jiliu ;
Peng, Xingchen ;
Wang, Yan .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (08)
[30]   Motor Fault Prediction Based on Fault Feature Extraction and Signal Distribution Optimization [J].
Qu, Yinpeng ;
Wang, Xiwei ;
Zhang, Xiaofei ;
Qin, Guojun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72