Resummation-based quantum Monte Carlo for entanglement entropy computation

被引:2
|
作者
Song, Menghan [1 ,2 ]
Wang, Ting-Tung [1 ,2 ]
Meng, Zi Yang [1 ,2 ]
机构
[1] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Peoples R China
[2] Univ Hong Kong, HK Inst Quantum Sci & Technol, Pokfulam Rd, Hong Kong, Peoples R China
关键词
D O I
10.1103/PhysRevB.110.115117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the recently developed resummation-based quantum Monte Carlo method for the SU(N) spin and loop-gas models, we developed an algorithm, dubbed ResumEE, to compute the entanglement entropy (EE) with greatly enhanced efficiency. Our ResumEE exponentially speeds up the computation of the exponentially small value of the (e-S(2)), where S(2) is the second-order R & eacute;nyi EE, such that the S(2) for a generic 2D quantum SU(N) spin models can be readily computed with high accuracy. We benchmark our algorithm with the previously proposed estimators of S(2) on 1D and 2D SU(2) Heisenberg spin systems to reveal its superior performance and then use it to detect the entanglement scaling data of the N & eacute;el-to-VBS transition on 2D SU(N) Heisenberg model with continuously varying N. Our ResumEE algorithm is efficient for precisely evaluating the entanglement entropy of SU(N) spin models with continuous N and reliable access to the conformal field theory data for the highly entangled quantum matter.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems
    Humeniuk, Stephan
    Roscilde, Tommaso
    PHYSICAL REVIEW B, 2012, 86 (23)
  • [22] Stable quantum Monte Carlo simulations for entanglement spectra of interacting fermions
    Assaad, Fakher F.
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [23] Entanglement negativity via the replica trick: A quantum Monte Carlo approach
    Chung, Chia-Min
    Alba, Vincenzo
    Bonnes, Lars
    Chen, Pochung
    Laeuchli, Andreas M.
    PHYSICAL REVIEW B, 2014, 90 (06)
  • [24] Consistent application of maximum entropy to quantum Monte Carlo data
    vonderLinden, W
    Preuss, R
    Hanke, W
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (21) : 3881 - 3888
  • [25] Entanglement and quantum computation
    Jozsa, R
    GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 369 - 379
  • [26] Numerical stabilization of entanglement computation in auxiliary-field quantum Monte Carlo simulations of interacting many-fermion systems
    Broecker, Peter
    Trebst, Simon
    PHYSICAL REVIEW E, 2016, 94 (06)
  • [27] Quantum entanglement and entropy
    Giraldi, F.
    Grigolini, P.
    Physical Review A. Atomic, Molecular, and Optical Physics, 2001, 64 (03): : 1 - 032310
  • [28] Quantum entanglement and entropy
    Giraldi, F
    Grigolini, P
    PHYSICAL REVIEW A, 2001, 64 (03): : 10
  • [29] QUANTUM MONTE-CARLO COMPUTATION - THE SIGN PROBLEM AS A BERRY PHASE
    SAMSON, JH
    PHYSICAL REVIEW B, 1993, 47 (06): : 3408 - 3411
  • [30] Computation of configurational entropy using Monte Carlo probabilities in cluster-variation method entropy expressions
    Tepesch, PD
    Asta, M
    Ceder, G
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1998, 6 (06) : 787 - 797