Can Molecular Quantum Computing Bridge Quantum Biology and Cognitive Science?

被引:2
作者
Wu, Wei [1 ]
Zhu, Jianhua [1 ,2 ]
Yao, Yong [3 ]
Lan, Yucheng [4 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] Peking Univ, Sch Phys, Chengfu Rd 209, Beijing 100871, Peoples R China
[3] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[4] Morgan State Univ, Dept Phys & Engn Phys, Baltimore 21251, MD USA
来源
INTELLIGENT COMPUTING | 2024年 / 3卷
基金
英国科学技术设施理事会; 欧盟地平线“2020”;
关键词
SPIN; CHEMISTRY; MAGNETS;
D O I
10.34133/icomputing.0072
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, quantum biology and molecular quantum computation have attracted substantial attention. Quantum biology applies quantum mechanics to biological systems at the molecular scale. Molecular quantum computing explores the degrees of freedom of molecules that can be used to produce quantum coherence, such as charge, orbital, opto-spin (interplay between optical excitation and spin), vibration, and rotation, to process quantum information. Cognitive science focuses on understanding how learning processes are realized, particularly within the human brain. The most common topic among these three is the computational process, which can exploit different levels of representation, either classical or quantum. Here, we review progress in quantum biology, molecular quantum computing, and quantum theory in cognitive science. Based on our critical analysis and review, we highlight that molecular quantum computing could be an important bridging research area between quantum biology and a deeper understanding of neuronal cells in cognitive science. Thus, these three areas can be the core to understanding how the classical world emerges from the quantum world and human intelligence. To answer these questions, we may gain insight by studying the quantum processes that underlie biological systems, such as photosynthesis and enzyme catalysis. An unprecedented opportunity for molecular quantum computing is to perform functionalities similar to those of the human brain. In this manner, we could not only expand the boundaries for quantum computing but also gain a better understanding of cognitive processes.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Scalable quantum computing with qudits on a graph [J].
Kiktenko, E. O. ;
Nikolaeva, A. S. ;
Xu, Peng ;
Shlyapnikov, G., V ;
Fedorov, A. K. .
PHYSICAL REVIEW A, 2020, 101 (02)
[22]   Efficient quantum computing with weak measurements [J].
Lund, A. P. .
NEW JOURNAL OF PHYSICS, 2011, 13
[23]   Cloud Quantum Computing of an Atomic Nucleus [J].
Dumitrescu, E. F. ;
McCaskey, A. J. ;
Hagen, G. ;
Jansen, G. R. ;
Morris, T. D. ;
Papenbrock, T. ;
Pooser, R. C. ;
Dean, D. J. ;
Lougovski, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (21)
[24]   Variational secure cloud quantum computing [J].
Shingu, Yuta ;
Takeuchi, Yuki ;
Endo, Suguru ;
Kawabata, Shiro ;
Watabe, Shohei ;
Nikuni, Tetsuro ;
Hakoshima, Hideaki ;
Matsuzaki, Yuichiro .
PHYSICAL REVIEW A, 2022, 105 (02)
[25]   Potential of quantum computing for drug discovery [J].
Cao, Y. ;
Romero, J. ;
Aspuru-Guzik, A. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2018, 62 (06)
[26]   Quantum computing enhanced computational catalysis [J].
von Burg, Vera ;
Low, Guang Hao ;
Haener, Thomas ;
Steiger, Damian S. ;
Reiher, Markus ;
Roetteler, Martin ;
Troyer, Matthias .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[27]   Distributed Quantum Computing for Chemical Applications [J].
Jones, Grier M. ;
Jacobsen, Hans-Arno .
2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2, 2024, :155-160
[28]   Silicon-based quantum dots have a path to scalable quantum computing [J].
Wilson, Mark .
PHYSICS TODAY, 2018, 71 (04) :17-20
[29]   A scalable architecture for quantum computation with molecular nanomagnets [J].
Jenkins, M. D. ;
Zueco, D. ;
Roubeau, O. ;
Aromi, G. ;
Majer, J. ;
Luis, F. .
DALTON TRANSACTIONS, 2016, 45 (42) :16682-16693
[30]   Quantum self-consistent equation-of-motion method for computing molecular excitation energies, ionization potentials, and electron affinities on a quantum computer [J].
Asthana, Ayush ;
Kumar, Ashutosh ;
Abraham, Vibin ;
Grimsley, Harper ;
Zhang, Yu ;
Cincio, Lukasz ;
Tretiak, Sergei ;
Dub, Pavel A. ;
Economou, Sophia E. ;
Barnes, Edwin ;
Mayhall, Nicholas J. .
CHEMICAL SCIENCE, 2023, 14 (09) :2405-2418