Synergistic Effects of Energy Storage Systems and Demand-Side Management in Optimizing Zero-Carbon Smart Grid Systems

被引:1
|
作者
Almutairi, Zeyad A. [1 ,2 ]
Eltamaly, Ali M. [1 ,3 ]
机构
[1] King Saud Univ, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[2] King Saud Univ, Mech Engn Dept, Riyadh 11421, Saudi Arabia
[3] Mansoura Univ, Dept Elect Engn, Mansoura 35516, Egypt
关键词
smart grid; zero-carbon; energy storage; Lithium ion VRFB batteries; demand-side management; optimization; renewable energy; sustainability; REDOX FLOW BATTERY; OPTIMIZATION; STRATEGY; VRB;
D O I
10.3390/en17225637
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The urgent need to mitigate climate change and reduce reliance on fossil fuels has driven the global shift towards renewable energy sources (RESs). However, the intermittent nature of RESs poses significant challenges to the widespread adoption of Zero-Carbon Smart Grids (ZCSGs). This study proposes a synergistic framework to address this hurdle. It utilizes energy storage systems (ESSs) by comparing Vanadium redox flow batteries (VRFBs) and Lithium ion batteries (LIBs) to identify the most suitable option for ZCSGs, with precise models enabling robust performance evaluation. Moreover, an accurate demand-side management (DSM) strategy considering power elasticity to manage discrepancies between electricity load, RES generation, and ESS availability is introduced for estimating fair, dynamic tariffs. An advanced load and weather-forecasting strategy is introduced for improving grid planning and management. An advanced optimization algorithm enhances grid stability and efficiency. Simulations demonstrate significant reductions in carbon footprint, peak power demand, and reliance on fossil fuels. The study finds that VRFBs outperform LIBs in cost and security, and dynamic tariffs based on accurate DSM significantly reduce energy costs. This work explores the challenges and opportunities of this integrated approach, offering policy recommendations and future research directions for truly optimized ZCSG implementation.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Demand-Side Energy Storage System Management In Smart Grid
    Chiu, Wei-Yu
    Sun, Hongjian
    Poor, H. Vincent
    2012 IEEE THIRD INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2012, : 73 - 78
  • [2] Demand-Side Management With Shared Energy Storage System in Smart Grid
    Jo, Jaeyeon
    Park, Jinkyoo
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (05) : 4466 - 4476
  • [3] Demand-Side Management in the Smart Grid
    Alizadeh, Mahnoosh
    Li, Xiao
    Wang, Zhifang
    Scaglione, Anna
    Melton, Ronald
    IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (05) : 55 - 67
  • [4] Demand-Side Energy Management Based on Nonconvex Optimization in Smart Grid
    Ma, Kai
    Bai, Yege
    Yang, Jie
    Yu, Yangqing
    Yang, Qiuxia
    ENERGIES, 2017, 10 (10):
  • [5] An Insight into the Integration of Distributed Energy Resources and Energy Storage Systems with Smart Distribution Networks Using Demand-Side Management
    Panda, Subhasis
    Mohanty, Sarthak
    Rout, Pravat Kumar
    Sahu, Binod Kumar
    Parida, Shubhranshu Mohan
    Kotb, Hossam
    Flah, Aymen
    Tostado-Veliz, Marcos
    Samad, Bdereddin Abdul
    Shouran, Mokhtar
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [6] Distributed Demand Side Management with Energy Storage in Smart Grid
    Hung Khanh Nguyen
    Song, Ju Bin
    Han, Zhu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (12) : 3346 - 3357
  • [7] Quadratic Programming for Demand-Side Management in the Smart Grid
    Saghezchi, Firooz B.
    Saghezchi, Fatemeh B.
    Nascimento, Alberto
    Rodriguez, Jonathan
    WIRELESS INTERNET (WICON 2014), 2015, 146 : 97 - 104
  • [8] A generic demand-side management model for smart grid
    Khan, Muhammad Asghar
    Javaid, Nadeem
    Mahmood, Anzar
    Khan, Zahoor Ali
    Alrajeh, Nabil
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (07) : 954 - 964
  • [9] A distributed demand-side management framework for the smart grid
    Barbato, Antimo
    Capone, Antonio
    Chen, Lin
    Martignon, Fabio
    Paris, Stefano
    COMPUTER COMMUNICATIONS, 2015, 57 : 13 - 24
  • [10] A Smart Grid Framework for Optimally Integrating Supply-Side, Demand-Side and Transmission Line Management Systems
    Monyei, Chukwuka
    Viriri, Serestina
    Adewumi, Aderemi
    Davidson, Innocent
    Akinyele, Daniel
    ENERGIES, 2018, 11 (05)