Boosting CO2 hydrogenation to light olefins with low CO selectivity through promoting HCOO* intermediates on Fe-ZnGa2O4/SAPO-34

被引:2
|
作者
Sun, Zheyi [1 ]
Gao, Zihao [1 ]
Ma, Rongting [1 ]
Xu, Qingling [1 ]
Shao, Bin [1 ,2 ]
Liu, Honglai [1 ,3 ]
Hu, Jun [1 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Sch Informat Sci & Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Chem Engn, Sch Chem Engn, 130 Meilong Rd, Shanghai 200237, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 358卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Carbon dioxide hydrogenation; Light olefins; Bifunctional catalyst; Fe doping; ZnGa2O4; spinel; CARBON-DIOXIDE; CONVERSION; SYNGAS; PROPENE;
D O I
10.1016/j.apcatb.2024.124358
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation to light olefins over oxide-zeolite (OX-ZEO) bifunctional catalysts has been considered as a promising solution towards Carbon Recycling, but still exists bottleneck problems in terms of low CO2 conversion efficiency and olefin yield. Facing to the challenges, we propose a strategy by stabilizing HCOO* intermediates and therefore inhibiting the COOH* pathway for the formation of CO byproducts through atomically doping Fe in ZnGa2O4 spinel. Various in situ characterizations and the dynamic analysis reveal quantitively that the highly dispersed Fe can facilitate the H* to attack the exposed C in adsorbed CO2* to enhance the CH3O* formation, promoting the consecutive olefin production. Coupling with SAPO-34, the optimized Fe-ZnGa2O4-2.5/SAPO-34 exhibits a high CO2 conversion efficiency of 26.6 % and C-2-C-4(=) yield of 12.5 % with an excellent stability for 200 h, providing a promising strategy for CO2 hydrogenation to light olefins.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Effective conversion of CO2 into lower olefins over GaCrZrOx/SAPO-34 tandem catalysts
    Wang, Ying
    Liu, Fei
    Yao, Mengqin
    Ma, Jun
    Geng, Shuo
    Cao, Jianxin
    Wang, Xiaodan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [32] Decisive Influence of SAPO-34 Zeolite on Light Olefin Selectivity in Methanol-Meditated CO2 Hydrogenation over Metal Oxide-Zeolite Catalysts
    Chernyak, Sergei A.
    Corda, Massimo
    Marinova, Maya
    Safonova, Olga V.
    Kondratenko, Vita A.
    Kondratenko, Evgenii V.
    Kolyagin, Yury G.
    Cheng, Kang
    Ordomsky, Vitaly V.
    Khodakov, Andrei Y.
    ACS CATALYSIS, 2023, 13 (22) : 14627 - 14638
  • [33] Direct CO2 hydrogenation to light olefins over ZnZrOx mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template
    Tian, Pan
    Zhan, Guowu
    Tian, Jian
    Tan, Kok Bing
    Guo, Meiting
    Han, Yating
    Fu, Tingjun
    Huang, Jiale
    Li, Qingbiao
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 315
  • [34] Design and preparation of CuZnTiO2/SAPO-34 bifunctional catalyst and its catalytic performance in CO2 hydrogenation to light olefins
    Chen, Jingyu
    Zhang, Jianhong
    Sheng, Hao
    Wu, Dakai
    Gao, Xinhua
    Ma, Qingxiang
    Zhang, Jianli
    Fan, Subing
    Zhao, Tiansheng
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (02): : 567 - 576
  • [35] Synergistic effects of ZnO-ZrO2@SAPO-34 core-shell catalyst in catalyzing CO2 hydrogenation for the synthesis of light olefins
    Lu, Peng
    Chang, Xiaoning
    Yu, Wenjia
    Hu, Qianwen
    Ali, Kime Mala
    Xing, Chuang
    Du, Ce
    Yang, Zhixiang
    Chen, Shuyao
    RENEWABLE ENERGY, 2023, 209 : 546 - 557
  • [36] Effect of water and methanol concentration in the feed on the deactivation of In2O3-ZrO2/SAPO-34 catalyst in the conversion of CO2/CO to olefins by hydrogenation
    Portillo, A.
    Parra, O.
    Erena, J.
    Aguayo, A. T.
    Bilbao, J.
    Ateka, A.
    FUEL, 2023, 346
  • [37] Electrospun Fe-Al-O Nanobelts for Selective CO2 Hydrogenation to Light Olefins
    Elishav, Oren
    Shener, Yuval
    Beilin, Vadim
    Landau, Miron, V
    Herskowitz, Moti
    Shter, Gennady E.
    Grader, Gideon S.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24855 - 24867
  • [38] Breaking the activity-selectivity trade- off of CO2 hydrogenation to light olefins
    Wang, Xiaoyue
    Zeng, Ting
    Guo, Xiaohong
    Yan, Zhiqiang
    Ban, Hongyan
    Yao, Ruwei
    Li, Congming
    Gu, Xiang-Kui
    Ding, Mingyue
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (37)
  • [39] Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity
    Yuan, Fei
    Zhang, Guanghui
    Zhu, Jie
    Ding, Fanshu
    Zhang, Anfeng
    Song, Chunshan
    Guo, Xinwen
    CATALYSIS TODAY, 2021, 371 : 142 - 149
  • [40] Selective Transformation of CO2 and H2 into Lower Olefins over In2O3-ZnZrOx/SAPO-34 Bifunctional Catalysts
    Dang, Shanshan
    Li, Shenggang
    Yang, Chengguang
    Chen, Xinqing
    Li, Xiaopeng
    Zhong, Liangshu
    Gao, Peng
    Sun, Yuhan
    CHEMSUSCHEM, 2019, 12 (15) : 3582 - 3591