Intelligent Dual Time Scale Network Slicing for Sensory Information Synchronization in Industrial IoT Networks

被引:0
|
作者
Tang, Lun [1 ,2 ]
Pu, Zhoulin [1 ,2 ]
Li, Zhixuan [1 ,2 ]
Fang, Dongxu [3 ]
Li, Li [1 ,2 ]
Chen, Qianbin [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Mobile Commun Technol, Chongqing 400065, Peoples R China
[3] China Mobile Grp Chongqing Co Ltd, Network Optimizat Ctr, Chongqing 401121, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 23期
基金
中国国家自然科学基金;
关键词
Resource management; Synchronization; Network slicing; Accuracy; Industrial Internet of Things; Task analysis; Wireless sensor networks; Deep reinforcement learning (DRL); digital twin (DT); industrial Internet of Things (IIoT); network slice; state estimation; DIGITAL TWIN NETWORKS; CHALLENGES; INTERNET;
D O I
10.1109/JIOT.2024.3448466
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital twins (DTs), as an effective technology for remote monitoring and management of devices, enhances the intelligence of the industrial Internet of Things (IIoT). Nonetheless, the unreliable and delayed transmission of sensory data in wireless access networks hinders the accurate reflection of DTs on the physical world. In this article, we present an intelligent dual time-scale network slicing strategy utilizing the long-term and short-term trends of network, aiming to make fuller use of network resources and improve the synchronization information accuracy of DTs. Specifically, within the dual time scale slicing framework, this strategy collaboratively optimize slice scaling and sensory information synchronization for DTs, aiming to maximize sensory information satisfaction and minimize the cost of slice reconfiguration and synchronization. First, at large time scales, we utilize slices to provide isolation and address deployment issues for DTs with different Quality of Service (QoS) requirements. At small time scales, we aim to enhance the adaptability of estimation tasks to dynamic environments through more flexible wireless resource allocation, further improving communication performance, and establishing DTs that closely resemble physical entities. Furthermore, to solve optimization problems at different time scales, we propose a two-layer deep reinforcement learning (DRL) framework to achieve efficient network resource interactions, in which the lower-layer control algorithms utilize the prioritized experience replay (PER) mechanism to accelerate the convergence speed. Finally, simulation results validate the effectiveness of the proposed strategy.
引用
收藏
页码:38615 / 38630
页数:16
相关论文
共 50 条
  • [1] Dynamic Network Slicing Orchestration for Remote Adaptation and Configuration in Industrial IoT
    Ji, Luyue
    He, Shibo
    Wu, Wenjie
    Gu, Chaojie
    Bi, Jichao
    Shi, Zhiguo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (06) : 4297 - 4307
  • [2] Intelligent and Low Overhead Network Synchronization for Large-Scale Industrial IoT Systems in the 6G Era
    Wang, Xianbin
    Jia, Pengyi
    Shen, Xuemin
    Poor, H. Vincent
    IEEE NETWORK, 2023, 37 (03): : 76 - 84
  • [3] A Survey of Intelligent Network Slicing Management for Industrial IoT: Integrated Approaches for Smart Transportation, Smart Energy, and Smart Factory
    Wu, Yulei
    Dai, Hong-Ning
    Wang, Haozhe
    Xiong, Zehui
    Guo, Song
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (02): : 1175 - 1211
  • [4] Passive Network Synchronization Based on Concurrent Observations in Industrial IoT Systems
    Jia, Pengyi
    Wang, Xianbin
    Shen, Xuemin
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (18) : 14028 - 14038
  • [5] Chip Design of PTP Time Synchronization for Industrial IoT
    Chen, Yee-Shao
    Chu, Yuan-Sun
    Lo, da-Wei
    Chiang, Yen-Ting
    Hou, Ting-Chao
    IEEE ACCESS, 2025, 13 : 21966 - 21979
  • [6] Deep Federated Q-Learning-Based Network Slicing for Industrial IoT
    Messaoud, Seifeddine
    Bradai, Abbas
    Ben Ahmed, Olfa
    Pham Tran Anh Quang
    Atri, Mohamed
    Hossain, M. Shamim
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5572 - 5582
  • [7] Digital-Twin-Enabled Intelligent Distributed Clock Synchronization in Industrial IoT Systems
    Jia, Pengyi
    Wang, Xianbin
    Shen, Xuemin
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4548 - 4559
  • [8] Digital Twin Sensing Information Synchronization Strategy Based on Intelligent Hierarchical Slicing Technique
    Tang, Lun
    Li, Zhixuan
    Wen, Wen
    Cheng, Zhangchao
    Chen, Qianbin
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (07): : 2793 - 2802
  • [9] Towards Secure and Intelligent Network Slicing for 5G Networks
    Salahdine, Fatima
    Liu, Qiang
    Han, Tao
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2022, 3 : 23 - 38
  • [10] Distributed Clock Synchronization Based on Intelligent Clustering in Local Area Industrial IoT Systems
    Jia, Pengyi
    Wang, Xianbin
    Zheng, Kan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (06) : 3697 - 3707