Advantages of Co-Pyrolysis of Sewage Sludge with Agricultural and Forestry Waste

被引:3
|
作者
Gusiatin, Mariusz Z. [1 ]
机构
[1] Univ Warmia & Mazury, Fac Geoengn, Dept Environm Biotechnol, Sloneczna St 45G, PL-10709 Olsztyn, Poland
关键词
sewage sludge; biomass; synergy; conversion; co-pyrolysis; SOLID-WASTE; RICE HUSK; BEHAVIOR; STRAW; BIOMASS;
D O I
10.3390/en17225736
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper explores the advantages of the co-pyrolysis of municipal sewage sludge with agricultural and forestry biomass, emphasizing its potential for environmental and economic benefits. Co-pyrolysis with lignocellulosic biomass significantly enhances biochar quality, reduces the heavy metal content, increases porosity, and improves nutrient retention, which are essential for soil applications. The biochar produced through co-pyrolysis demonstrates enhanced stability and a lower oxygen-to-carbon (O/C) ratio, making it more suitable for long-term carbon (C) sequestration and pollutant adsorption. Additionally, co-pyrolysis generates bio-oil and syngas with improved calorific value, contributing to renewable energy recovery from sewage sludge. This synergistic process also addresses waste management challenges by reducing harmful emissions and immobilizing heavy metals, thus mitigating the environmental risks associated with sewage sludge disposal. This paper covers key sections on the properties of waste materials, improvements in biochar quality and energy products, and the environmental benefits of co-pyrolysis, such as emissions reduction and heavy metal immobilization. The paper highlights trends and challenges in co-pyrolysis technology, aiming to optimize parameters for maximizing biochar yield and energy recovery while aligning with sustainability and circular economy goals. The paper concludes with recommendations for optimizing co-pyrolysis processes and scaling applications to support sustainable waste management. Overall, co-pyrolysis represents a sustainable approach to valorizing sewage sludge, transforming it into valuable resources while supporting environmental conservation.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Co-pyrolysis of sewage sludge and manure
    Ruiz-Gomez, Nadia
    Quispe, Violeta
    Abrego, Javier
    Atienza-Martinez, Maria
    Benita Murillo, Maria
    Gea, Gloria
    WASTE MANAGEMENT, 2017, 59 : 211 - 221
  • [2] Microwave co-pyrolysis of sewage sludge and rice straw
    Huang, Yu-Fong
    Shih, Chun-Hao
    Chiueh, Pei-Te
    Lo, Shang-Lien
    ENERGY, 2015, 87 : 638 - 644
  • [3] Co-pyrolysis of sewage sludge and organic components of rural household waste: Process and gas products
    Chen, H.
    Yu, Z.
    Dai, X.
    Tian, S.
    Li, E.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2025, 22 (08) : 7157 - 7168
  • [4] Co-Pyrolysis of Sewage Sludge, Two-Component Special Municipal Waste and Plastic Waste
    Tomasek, Szabina
    Miskolczi, Norbert
    ENERGIES, 2024, 17 (15)
  • [5] Modeling and kinetic analysis for co-pyrolysis of sewage sludge and municipal solid waste under multiple factors
    Zhang, Hongnan
    Sun, Yunan
    Tao, Junyu
    Du, Chengming
    Yan, Beibei
    Li, Xiangping
    Chen, Guanyi
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2025,
  • [6] Sewage sludge co-pyrolysis with agricultural/forest residues: A comparative life-cycle assessment
    Mohamed, Badr A.
    Ruan, Roger
    Bilal, Muhammad
    Periyasamy, Selvakumar
    Awasthi, Mukesh Kumar
    Rajamohan, Natarajan
    Leng, Lijian
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 192
  • [7] Sewage sludge and phytomass co-pyrolysis and the gasification of its chars: A kinetics and reaction mechanism study
    Urych, Beata
    Smolinski, Adam
    FUEL, 2021, 285
  • [8] Characteristic of bio-oil obtained from co-pyrolysis of municipal sewage sludge and typical forestry biomass
    Chen Q.
    Liu H.
    Xu Q.
    Wu H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (07): : 456 - 462
  • [9] Study on the co-pyrolysis characteristics of sewage sludge and wood powder and kinetic analysis
    Zhang, Jun
    Zhao, Rui
    Du, Yuying
    Chen, Liang
    Chen, Zizhao
    Xiao, Na
    Wu, Zhengshun
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (02) : 1593 - 1605
  • [10] Co-pyrolysis of microalgae and sewage sludge: Biocrude assessment and char yield prediction
    Wang, Xin
    Zhao, Bingwei
    Yang, Xiaoyi
    ENERGY CONVERSION AND MANAGEMENT, 2016, 117 : 326 - 334