Quantum frustrated Wigner chains

被引:1
作者
Menu, Raphael [1 ]
Malo, Jorge Yago [2 ,3 ]
Vuletic, Vladan [4 ]
Chiofalo, Maria Luisa [2 ,3 ]
Morigi, Giovanna [1 ]
机构
[1] Univ Saarland, Theoret Phys, D-66123 Saarbrucken, Germany
[2] Univ Pisa, Dipartimento Fis Enr Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[3] INFN, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[4] MIT, MIT Harvard Ctr Ultracold Atoms & Res Lab Elect, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FRENKEL-KONTOROVA MODEL; DIMENSIONAL ISING-MODEL; LONG-RANGE INTERACTIONS; FRICTION; CRYSTAL; PHASES; ATOM;
D O I
10.1103/PhysRevB.110.155121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Wigner chain in a periodic potential is a paradigmatic example of geometric frustration with long-range interactions. The dynamics emulates the Frenkel-Kontorova model with Coulomb interactions. In the continuum approximation, dislocations are sine-Gordon solitons with power-law decaying tails. We show that their action is mapped into a massive, long-range (1+1) + 1) Thirring model, in which the solitons are charged fermionic excitations over an effective Dirac sea. We identify the corresponding mean-field theory and show that the Coulomb interactions destabilize structures commensurate with the periodic substrate, suppressing their onset and giving rise to interaction-induced lubrication. Our study identifies the role of long-range interactions on determining nanofriction. Our predictions can be probed in state-of-the-art trapped ion experiments.
引用
收藏
页数:8
相关论文
共 65 条
[1]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[2]   ONE-DIMENSIONAL ISING-MODEL AND THE COMPLETE DEVILS STAIRCASE [J].
BAK, P ;
BRUINSMA, R .
PHYSICAL REVIEW LETTERS, 1982, 49 (04) :249-251
[4]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[5]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
[6]   Phase structure of the (1+1)-dimensional massive Thirring model from matrix product states [J].
Banuls, Mari Carmen ;
Cichy, Krzysztof ;
Kao, Ying-Jer ;
Lin, C. -J. David ;
Lin, Yu-Ping ;
Tan, David T. -L. .
PHYSICAL REVIEW D, 2019, 100 (09)
[7]   GLOBAL UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL [J].
BIHAM, O ;
MUKAMEL, D .
PHYSICAL REVIEW A, 1989, 39 (10) :5326-5335
[8]   Quantum effects in the Aubry transition [J].
Bonetti, Pietro Maria ;
Rucci, Andrea ;
Chiofalo, Maria Luisa ;
Vuletic, Vladan .
PHYSICAL REVIEW RESEARCH, 2021, 3 (01)
[9]   SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R ;
PFEUTY, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :478-481
[10]   KINKS IN THE FRENKEL-KONTOROVA MODEL WITH LONG-RANGE INTERPARTICLE INTERACTIONS [J].
BRAUN, OM ;
KIVSHAR, YS ;
ZELENSKAYA, II .
PHYSICAL REVIEW B, 1990, 41 (10) :7118-7138