NaCl-passivated and Na+-doped tin oxide electron transport layers enable highly efficient planar perovskite solar cells

被引:0
作者
Dong L. [1 ]
Qiu L. [1 ]
Mei D. [1 ]
Ma X. [1 ]
Song L. [1 ,2 ]
Wang J. [1 ]
Xiong J. [1 ,2 ]
Du P. [1 ,2 ,3 ]
机构
[1] College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou
[2] Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou
[3] Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou
关键词
Defect passivation; Electron transport layer; Perovskite solar cells; Tin oxide;
D O I
10.1016/j.jpcs.2021.110250
中图分类号
学科分类号
摘要
Tin oxide (SnO2)-based electron transport layers (ETLs) are used to make flexible perovskite solar cells (PSCs) because of their low-temperature properties. However, when pure SnO2 is used, the poor interface formed between the SnO2 ETL and the perovskite layer is detrimental to the efficiency of the PSCs. In this work, we report the synthesis and characterisation of a SnO2–NaCl composite ETL. Na+ and Cl− at the ETL/perovskite interface passivate the ETL/perovskite contact and suppress nonradiative recombination centres. Meanwhile, Na+ diffuses from the ETL to the perovskite film, passivating its grain boundaries. The outstanding capability of Na + to increase the grain size and consequently improve the charge dynamics and increase the power conversion efficiency was also verified. PSCs with a SnO2–NaCl ETL exhibited an open-circuit voltage of 1.11 V, which was higher than the reference (1.08 V) for lower band gap perovskite absorbers, and achieved a power conversion efficiency of 18.56% with negligible hysteresis. © 2021 Elsevier Ltd
引用
收藏
相关论文
共 48 条
  • [1] Green M.A., Ho-Baillie A., Snaith H.J., The emergence of perovskite solar cells, Nat. Photonics, 8, pp. 506-514, (2014)
  • [2] Snaith H.J., Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells, J. Phys. Chem. Lett., 4, pp. 3623-3630, (2013)
  • [3] Burn P.L., Meredith P., The rise of the perovskites: the future of low cost solar photovoltaics?, NPG Asia Mater., 6, (2014)
  • [4] Gratzel M., The light and shade of perovskite solar cells, Nat. Mater., 13, pp. 838-842, (2014)
  • [5] Tailor N.K., Abdi-Jalebi M., Gupta V., Lu H.L., Dar M.I., Li G., Satapathi S., Recent progress in morphology optimization in perovskite solar cells, J. Mater. Chem. A, 8, pp. 21356-21386, (2020)
  • [6] Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, pp. 6050-6051, (2009)
  • [7] Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J.P., Leijtens T., Herz L.M., Petrozza A., Snaith H.J., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, pp. 341-344, (2013)
  • [8] Burschka J., Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Gratzel M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, pp. 316-319, (2013)
  • [9] Song D.D., Ji J., Li Y.Y., Li G.Y., Li M.C., Wang T.Y., Wei D., Cui P., He Y., Mbengue J.M., Degradation of organometallic perovskite solar cells induced by trap states, Appl. Phys. Lett., 108, (2016)
  • [10] Davies C.L., Filip M.R., Patel J.B., Crothers T.W., Verdi C., Wright A.D., Milot R.L., Giustino F., Johnston M.B., Herz L.M., Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process, Nat. Commun., 9, (2018)