Deep Interactive Segmentation of Medical Images: A Systematic Review and Taxonomy

被引:6
作者
Marinov, Zdravko [1 ]
Jaeger, Paul F. [2 ,3 ]
Egger, Jan [4 ]
Kleesiek, Jens [4 ]
Stiefelhagen, Rainer [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Informat, Comp Vis Human Comp Interact Lab, D-76131 Karlsruhe, Germany
[2] German Canc Res Ctr DKFZ Heidelberg, Interact Machine Learning Grp, D-69120 Heidelberg, Germany
[3] German Canc Res Ctr, Helmholtz Imaging, D-69120 Heidelberg, Germany
[4] Univ Hosp Essen AoR, Inst Artificial Intelligence Med IKIM, D-45131 Essen, Germany
关键词
Deep learning; interactive segmentation; medical imaging; systematic review; REPRESENTATION;
D O I
10.1109/TPAMI.2024.3452629
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or masks and allows for iterative refinement of the model output so as to efficiently guide the system towards the desired behavior. In recent years, deep learning-based approaches have propelled results to a new level causing a rapid growth in the field with 121 methods proposed in the medical imaging domain alone. In this review, we provide a structured overview of this emerging field featuring a comprehensive taxonomy, a systematic review of existing methods, and an in-depth analysis of current practices. Based on these contributions, we discuss the challenges and opportunities in the field. For instance, we find that there is a severe lack of comparison across methods which needs to be tackled by standardized baselines and benchmarks.
引用
收藏
页码:10998 / 11018
页数:21
相关论文
共 50 条
[21]   A systematic review of deep learning methods for the classification and segmentation of prostate cancer on magnetic resonance images [J].
Nayagam, R. Deiva ;
Selvathi, D. .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
[22]   Literature review on deep learning for the segmentation of seismic images [J].
Monteiro, Bruno A. A. ;
Cangucu, Gabriel L. ;
Jorge, Leonardo M. S. ;
Vareto, Rafael H. ;
Oliveira, Bryan S. ;
Silva, Thales H. ;
Lima, Luiz Alberto ;
Machado, Alexei M. C. ;
Schwartz, William Robson ;
Vaz-de-Melo, Pedro O. S. .
EARTH-SCIENCE REVIEWS, 2024, 258
[23]   Deep learning for retinal vessel segmentation: a systematic review of techniques and applications [J].
Liu, Zhihui ;
Sunar, Mohd Shahrizal ;
Tan, Tian Swee ;
Hitam, Wan Hazabbah Wan .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2025, 63 (08) :2191-2208
[24]   Deep Learning in Medical Hyperspectral Images: A Review [J].
Cui, Rong ;
Yu, He ;
Xu, Tingfa ;
Xing, Xiaoxue ;
Cao, Xiaorui ;
Yan, Kang ;
Chen, Jiexi .
SENSORS, 2022, 22 (24)
[25]   An efficient interactive segmentation framework for medical images without pre-training [J].
Sun, Lei ;
Tian, Zhiqiang ;
Chen, Zhang ;
Luo, Wenrui ;
Du, Shaoyi .
MEDICAL PHYSICS, 2023, 50 (04) :2239-2248
[26]   Interactive defect segmentation in X-Ray images based on deep learning [J].
Du, Wangzhe ;
Shen, Hongyao ;
Zhang, Ge ;
Yao, Xinhua ;
Fu, Jianzhong .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 198
[27]   Medical deep learning-A systematic meta-review [J].
Egger, Jan ;
Gsaxner, Christina ;
Pepe, Antonio ;
Pomykala, Kelsey L. ;
Jonske, Frederic ;
Kurz, Manuel ;
Li, Jianning ;
Kleesiek, Jens .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
[28]   The Role of Deep Learning in Medical Image Inpainting: A Systematic Review [J].
Santos, Joana Cristo ;
Alexandre, Hugo Tomas Pereira ;
Santos, Miriam Seoane ;
Abreu, Pedro Henriques .
ACM TRANSACTIONS ON COMPUTING FOR HEALTHCARE, 2025, 6 (03)
[29]   A Review of the Deep Learning Methods for Medical Images Super Resolution Problems [J].
Li, Y. ;
Sixou, B. ;
Peyrin, F. .
IRBM, 2021, 42 (02) :120-133
[30]   A comprehensive review of deep learning for medical image segmentation [J].
Xia, Qingling ;
Zheng, Hong ;
Zou, Haonan ;
Luo, Dinghao ;
Tang, Hongan ;
Li, Lingxiao ;
Jiang, Bin .
NEUROCOMPUTING, 2025, 613