On the Bipartite Entanglement Capacity of Quantum Networks
被引:2
|
作者:
论文数: 引用数:
h-index:
机构:
Vardoyan, Gayane
[1
,3
]
论文数: 引用数:
h-index:
机构:
van Milligen, Emily
[2
]
论文数: 引用数:
h-index:
机构:
Guha, Saikat
[2
]
Wehner, Stephanie
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, NL-2628 CD Delft, NetherlandsDelft Univ Technol, NL-2628 CD Delft, Netherlands
Wehner, Stephanie
[1
]
Towsley, Don
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts, Amherst, MA 01003 USADelft Univ Technol, NL-2628 CD Delft, Netherlands
Towsley, Don
[3
]
机构:
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
[2] Univ Arizona, Tucson, AZ 85721 USA
[3] Univ Massachusetts, Amherst, MA 01003 USA
来源:
IEEE TRANSACTIONS ON QUANTUM ENGINEERING
|
2024年
/
5卷
基金:
荷兰研究理事会;
美国国家科学基金会;
关键词:
Quantum entanglement;
Quantum networks;
Routing;
Multiplexing;
Capacity planning;
Probabilistic logic;
Topology;
Entanglement distribution and routing;
mixed-integer quadratically constrained program (MIQCP);
quantum network;
REMOTE ENTANGLEMENT;
CRYPTOGRAPHY;
D O I:
10.1109/TQE.2024.3366696
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We consider the problem of multipath entanglement distribution to a pair of nodes in a quantum network consisting of devices with nondeterministic entanglement swapping capabilities. Multipath entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with preestablished link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the amount of entanglement that is shared between the nodes; this is especially the case when, due to practical constraints, swaps must be performed in temporal proximity to each other. Limiting our focus to the case where only bipartite entanglement is generated across the network, we cast the problem as an instance of generalized flow maximization between two quantum end nodes wishing to communicate. We propose a mixed-integer quadratically constrained program (MIQCP) to solve this flow problem for networks with arbitrary topology. We then compute the overall network capacity, defined as the maximum number of Einstein-Podolsky-Rosen (EPR) states distributed to users per time unit, by solving the flow problem for all possible network states generated by probabilistic entangled link presence and absence, and subsequently by averaging over all network state capacities. The MIQCP can also be applied to networks with multiplexed links. While our approach for computing the overall network capacity has the undesirable property that the total number of states grows exponentially with link multiplexing capability, it nevertheless yields an exact solution that serves as an upper bound comparison basis for the throughput performance of more easily implementable yet nonoptimal entanglement routing algorithms.
机构:
Aliro Technol Inc, Boston, MA 02135 USAAliro Technol Inc, Boston, MA 02135 USA
Victora, Michelle
Tserkis, Spyros
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USAAliro Technol Inc, Boston, MA 02135 USA
Tserkis, Spyros
Krastanov, Stefan
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USAAliro Technol Inc, Boston, MA 02135 USA
Krastanov, Stefan
de la Cerda, Alexander Sanchez
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USAAliro Technol Inc, Boston, MA 02135 USA
de la Cerda, Alexander Sanchez
Willis, Steven
论文数: 0引用数: 0
h-index: 0
机构:
Aliro Technol Inc, Boston, MA 02135 USAAliro Technol Inc, Boston, MA 02135 USA
Willis, Steven
Narang, Prineha
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles UCLA, Coll Letters & Sci, Los Angeles, CA 90095 USAAliro Technol Inc, Boston, MA 02135 USA