Influence of Parameter Variation in Analytical Preisach Model on Shape of Hysteresis Loop

被引:0
作者
Zhang, Huiying [1 ,2 ]
Shen, Yadong [2 ]
Tian, Mingxing [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Rail Transit Elect Automat Engn Lab Gansu Prov, Lanzhou 730070, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetization; Magnetic hysteresis; Distribution functions; Analytical models; Parameter estimation; Market research; Magnetic devices; Computational modeling; Computational efficiency; Parametric statistics; Magnetization characteristic; analytical Preisach model; magnetic hysteresis loop; parametric effect analysis; WI-FI; INDOOR LOCALIZATION; DATASET;
D O I
10.1109/ACCESS.2024.3496790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Analytical Preisach Model (APM) describes the magnetization characteristics of materials with high accuracy and good universality, and the corresponding mathematical equations of the model are analytical expressions, which makes it very easy to solve and calculate. The distribution function parameters of APM are the main influencing factors on the shape of the hysteresis loop. In this paper, coercive force, remanence point, vertex magnetic induction intensity, area, rectangular ratio, and inclination of the hysteresis loop are used as comparative indicators for the shape of the hysteresis loop. The sensitivity analysis of the influence of distribution function parameter value changes on the hysteresis loop shape is conducted using the single factor variable method. The parameter values vary within the range of 0.9-1.1 times the baseline value, and when one parameter changes, the other parameters remain unchanged. By observing and analyzing the shape of the hysteresis loop before and after parameter changes and comparing the numerical values of the indicators, the law of the shape of the hysteresis loop changing with parameters can be obtained. The results show that some parameters have a low sensitivity to changes in the hysteresis loop shape, while others have a high sensitivity and cause significant variations. Furthermore, the direction of change in the shape indicator varies depending on the parameter. Some indicators increase with parameter increase, while others decrease. This information can be used to guide the correction of APM parameter values.
引用
收藏
页码:168975 / 168982
页数:8
相关论文
共 50 条
  • [21] A Wavelet descriptor model of hysteresis loop phenomena
    Bisht, Hrishitosh
    Gadre, Vikram M.
    Kulkarni, Shrikrishna V.
    Sai Ram, Boggavarapu
    IET ELECTRIC POWER APPLICATIONS, 2020, 14 (11) : 2179 - 2186
  • [22] Parameter estimation techniques for a polarization hysteresis model
    Smith, RC
    Hatch, A
    SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 155 - 163
  • [23] Analysis and Torque Calculation of an Axial Flux Hysteresis Motor Based on Hyperbolic Model of Hysteresis Loop in Cartesian Coordinates
    Nasiri-Zarandi, Reza
    Mirsalim, Mojtaba
    IEEE TRANSACTIONS ON MAGNETICS, 2015, 51 (07)
  • [24] Modified Preisach Model of Hysteresis in Multi Air Gap Ferrite Core Medium Frequency Transformer
    Michna, Michal
    Dworakowski, Piotr
    Wilk, Andrzej
    Kutt, Filip
    Mermet-Guyennet, Michel
    IEEE TRANSACTIONS ON POWER DELIVERY, 2022, 37 (01) : 116 - 124
  • [25] Development and research of mathematical model of current transformer reproducing magnetic hysteresis based on Preisach theory
    Andreev, Mikhail
    Suvorov, Alexey
    Ruban, Nikolay
    Ufa, Ruslan
    Gusev, Alexander
    Askarov, Alisher
    Kievets, Anton
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (14) : 2720 - 2730
  • [26] Mathematical Model of Major Hysteresis Loop and Transient Magnetizations
    Milovanovic, Alenka M.
    Koprivica, Branko M.
    ELECTROMAGNETICS, 2015, 35 (03) : 155 - 166
  • [27] Hybrid intelligent hysteresis model based on DBN-DNN algorithm and fusion Preisach operator
    Ma, Yangyang
    Li, Yongjian
    Yue, Shuaichao
    Sun, He
    Yang, Ming
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 544
  • [28] Clamp Nonlinear Modeling and Hysteresis Model Parameter Identification
    Lin, Junzhe
    Niu, Zhihong
    Zhang, Xufang
    Ma, Hui
    Zhao, Yulai
    Han, Qingkai
    IEEE ACCESS, 2021, 9 : 147757 - 147767
  • [30] Incorporation of a Vector Preisach-Mayergoyz Hysteresis Model in 3-D Finite Element Analysis
    Tousignant, Maxime
    Sirois, Frederic
    Meunier, Gerard
    Guerin, Christophe
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)