Influence of Parameter Variation in Analytical Preisach Model on Shape of Hysteresis Loop

被引:0
作者
Zhang, Huiying [1 ,2 ]
Shen, Yadong [2 ]
Tian, Mingxing [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Rail Transit Elect Automat Engn Lab Gansu Prov, Lanzhou 730070, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetization; Magnetic hysteresis; Distribution functions; Analytical models; Parameter estimation; Market research; Magnetic devices; Computational modeling; Computational efficiency; Parametric statistics; Magnetization characteristic; analytical Preisach model; magnetic hysteresis loop; parametric effect analysis; WI-FI; INDOOR LOCALIZATION; DATASET;
D O I
10.1109/ACCESS.2024.3496790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Analytical Preisach Model (APM) describes the magnetization characteristics of materials with high accuracy and good universality, and the corresponding mathematical equations of the model are analytical expressions, which makes it very easy to solve and calculate. The distribution function parameters of APM are the main influencing factors on the shape of the hysteresis loop. In this paper, coercive force, remanence point, vertex magnetic induction intensity, area, rectangular ratio, and inclination of the hysteresis loop are used as comparative indicators for the shape of the hysteresis loop. The sensitivity analysis of the influence of distribution function parameter value changes on the hysteresis loop shape is conducted using the single factor variable method. The parameter values vary within the range of 0.9-1.1 times the baseline value, and when one parameter changes, the other parameters remain unchanged. By observing and analyzing the shape of the hysteresis loop before and after parameter changes and comparing the numerical values of the indicators, the law of the shape of the hysteresis loop changing with parameters can be obtained. The results show that some parameters have a low sensitivity to changes in the hysteresis loop shape, while others have a high sensitivity and cause significant variations. Furthermore, the direction of change in the shape indicator varies depending on the parameter. Some indicators increase with parameter increase, while others decrease. This information can be used to guide the correction of APM parameter values.
引用
收藏
页码:168975 / 168982
页数:8
相关论文
共 50 条
  • [11] Application of a Preisach-type hysteresis model to the magnetic evaluation of material degradation
    Vandenbossche, Lode
    Dupre, Luc
    Melkebeek, Jan
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2007, 25 (1-4) : 363 - 368
  • [12] Modelling the effect of excitation frequency on the shape of hysteresis loop in permalloy
    Jablonski, Pawel
    Chwastek, Krzysztof
    Najgebauer, Mariusz
    Kusiak, Dariusz
    Szczegielniak, Tomasz
    Koprivica, Branko
    Rosic, Marko
    Divac, Srdjan
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (10): : 160 - 163
  • [13] Identification of the scalar Preisach model with a single branch of descending hysteresis loop and numerical interpolation for the electrical steel sheet lamination with soft magnetic properties
    Goo, Nam Hoon
    Hong, Jae-Wan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 586
  • [14] A combined Preisach-Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D
    Talebian, Soheil
    Hojjat, Yousef
    Ghodsi, Mojtaba
    Karafi, Mohammad Reza
    Mirzamohammadi, Shahed
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 396 : 38 - 47
  • [15] Dynamic Ferromagnetic Hysteresis Modelling Using a Preisach-Recurrent Neural Network Model
    Grech, Christian
    Buzio, Marco
    Pentella, Mariano
    Sammut, Nicholas
    MATERIALS, 2020, 13 (11)
  • [16] Efficient Algorithms for the Inclusion of the Preisach Hysteresis Model in Nonlinear Finite-Element Methods
    Dlala, Emad
    IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (02) : 395 - 408
  • [17] Three-Dimensional Vector Preisach Hysteresis Model of the Soft Magnetic Composite Material
    Zhang, Chang Geng
    Li, Yong Jian
    Li, Dan Dan
    Yang, Qing Xin
    2013 IEEE INTERNATIONAL CONFERENCE ON APPLIED SUPERCONDUCTIVITY AND ELECTROMAGNETIC DEVICES (ASEMD), 2013, : 454 - 457
  • [18] Improved Preisach Model for Modelling Magnetic Hysteresis Effect in Non-Oriented Steels
    Zeinali, R.
    Krop, D. C. J.
    Lomonova, E.
    Ertan, H. B.
    2018 XIII INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES (ICEM), 2018, : 1031 - 1036
  • [19] A brushless exciter model incorporating multiple rectifier modes and Preisach's hysteresis theory
    Aliprantis, DC
    Sudhoff, SD
    Kuhn, BT
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (01) : 136 - 147
  • [20] Inverse Rheological Hysteresis Model and its Efficient Parameter Identification Method
    Liu, Ren
    Lu, Youhao
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03)