Influence of Parameter Variation in Analytical Preisach Model on Shape of Hysteresis Loop

被引:0
作者
Zhang, Huiying [1 ,2 ]
Shen, Yadong [2 ]
Tian, Mingxing [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Automat & Elect Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Rail Transit Elect Automat Engn Lab Gansu Prov, Lanzhou 730070, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Magnetization; Magnetic hysteresis; Distribution functions; Analytical models; Parameter estimation; Market research; Magnetic devices; Computational modeling; Computational efficiency; Parametric statistics; Magnetization characteristic; analytical Preisach model; magnetic hysteresis loop; parametric effect analysis; WI-FI; INDOOR LOCALIZATION; DATASET;
D O I
10.1109/ACCESS.2024.3496790
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Analytical Preisach Model (APM) describes the magnetization characteristics of materials with high accuracy and good universality, and the corresponding mathematical equations of the model are analytical expressions, which makes it very easy to solve and calculate. The distribution function parameters of APM are the main influencing factors on the shape of the hysteresis loop. In this paper, coercive force, remanence point, vertex magnetic induction intensity, area, rectangular ratio, and inclination of the hysteresis loop are used as comparative indicators for the shape of the hysteresis loop. The sensitivity analysis of the influence of distribution function parameter value changes on the hysteresis loop shape is conducted using the single factor variable method. The parameter values vary within the range of 0.9-1.1 times the baseline value, and when one parameter changes, the other parameters remain unchanged. By observing and analyzing the shape of the hysteresis loop before and after parameter changes and comparing the numerical values of the indicators, the law of the shape of the hysteresis loop changing with parameters can be obtained. The results show that some parameters have a low sensitivity to changes in the hysteresis loop shape, while others have a high sensitivity and cause significant variations. Furthermore, the direction of change in the shape indicator varies depending on the parameter. Some indicators increase with parameter increase, while others decrease. This information can be used to guide the correction of APM parameter values.
引用
收藏
页码:168975 / 168982
页数:8
相关论文
共 50 条
  • [1] The Preisach model of hysteresis: fundamentals and applications
    Semenov, M. E.
    Borzunov, S., V
    Meleshenko, P. A.
    Sel'vesyuk, N., I
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [2] A new Preisach type hysteresis model of high temperature superconductors
    Duan, Nana
    Xu, Weijie
    Wang, Shuhong
    Zhu, Jianguo
    Guo, Youguang
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [3] Design of the magnetic hysteresis mathematical model based on Preisach theory
    Mikhail Andreev
    Alisher Askarov
    Aleksey Suvorov
    Electrical Engineering, 2019, 101 : 3 - 9
  • [4] Efficient Use of Preisach Hysteresis Model in Computer Aided Design
    Ionita, Valentin
    Petrescu, Lucian
    Bordianu, Adelina
    Tabara, Octavian
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2013, 13 (02) : 121 - 126
  • [5] Design of the magnetic hysteresis mathematical model based on Preisach theory
    Andreev, Mikhail
    Askarov, Alisher
    Suvorov, Aleksey
    ELECTRICAL ENGINEERING, 2019, 101 (01) : 3 - 9
  • [6] Fast Preisach-based magnetization model and fast inverse hysteresis model
    Reimers, A
    Della Torre, E
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (06) : 3857 - 3866
  • [7] Parameter estimation of extended Jiles-Atherton hysteresis model based on ISFLA
    Zou, Mi
    IET ELECTRIC POWER APPLICATIONS, 2020, 14 (02) : 212 - 219
  • [8] Limiting loop proximity hysteresis model
    de Almeida, LAL
    Deep, GS
    Lima, AMN
    Neff, H
    IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (01) : 523 - 528
  • [9] Preisach-type stress-dependent magnetic vector hysteresis model
    Sipeky, A.
    Ivanyi, A.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) : 491 - 495
  • [10] Definition and Identification of an Improved Preisach Model for Magnetic Hysteresis Based on the KP operator
    Amato, Massimiliano
    Ghezzi, Luca
    Piegari, Luigi
    Toscani, Sergio
    2022 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2022), 2022,