An Efficient Deep Learning Mechanism for Predicting Fake News/Reviews in Twitter Data

被引:0
|
作者
Devan, K. Parimala Kanaga [1 ]
Mala, G. S. Anandha [1 ]
机构
[1] Easwari Engn Coll, Dept Comp Sci & Engn, Chennai 600089, Tamil Nadu, India
关键词
Fake news prediction; twitter data; deep learning models; Pre-processing; feature extraction; DCNN; Bi-LSTM; NETWORKS;
D O I
10.1142/S0218213024500064
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, social media platforms have been widely utilized as information sources due to their effortless accessibility and reduced costs. However, online platforms like Instagram, Twitter and Facebook get influenced by their users via fake news/reviews. The main intention of spreading fake news is to mislead other network users, which highly affects businesses, political parties, etc. Thus, an effective methodology is needed to predict fake news from social media automatically. The major objective of this proposed study is to identify and classify the given Twitter input data as real or fake through deep learning mechanisms. The proposed study involves four stages: pre-processing, embedded word analysis, feature extraction, and fake news/reviews prediction. Initially, pre-processing is performed to enhance the quality of data with the help of tokenization, stemming and stop word removal. Embedded word analysis is done using Advanced Word2Vec and GloVe modeling to enhance the performance of a proposed prediction model. Then, the hybrid deep learning model named Dense Convolutional assisted Gannet Optimal Bi-directional Network (DC_GO_BiNet) is introduced for feature extraction and prediction. A Dense Convolutional Neural Network (DCNN) is hybridized with a bi-directional long-short-term memory (Bi-LSTM) model to extract the essential features and predict fake news from the given input text. Also, the proposed model's parameters are fine-tuned by adopting a gannet optimization (GO) algorithm. The proposed study used three different datasets and obtained higher classification accuracy as 99.5% in Fake News Detection on Twitter EDA, 99.59% in FakeNewsNet and 99.51% in ISOT. The analysis proves that the proposed model attains higher prediction results for each dataset than others.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Deep learning methods for Fake News detection
    Kresnakova, Viera Maslej
    Sarnovsky, Martin
    Butka, Peter
    IEEE JOINT 19TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND INFORMATICS AND 7TH INTERNATIONAL CONFERENCE ON RECENT ACHIEVEMENTS IN MECHATRONICS, AUTOMATION, COMPUTER SCIENCES AND ROBOTICS (CINTI-MACRO 2019), 2019, : 143 - 148
  • [12] Fake Detect: A Deep Learning Ensemble Model for Fake News Detection
    Aslam, Nida
    Ullah Khan, Irfan
    Alotaibi, Farah Salem
    Aldaej, Lama Abdulaziz
    Aldubaikil, Asma Khaled
    COMPLEXITY, 2021, 2021
  • [13] Fake news detection on Pakistani news using machine learning and deep learning
    Kishwar, Azka
    Zafar, Adeel
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [14] An optimal detection of fake news from Twitter data using dual-stage deep capsule autoencoder
    Devan, K. Parimala Kanaga
    Mala, G. S. Anandha
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2024, 36 (02) : 287 - 313
  • [15] Learning from the News: Predicting Entity Popularity on Twitter
    Saleiro, Pedro
    Soares, Carlos
    ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 171 - 182
  • [16] Arabic Fake News Detection Using Deep Learning
    Othman, Nermin Abdelhakim
    Elzanfaly, Doaa S.
    Elhawary, Mostafa Mahmoud M.
    IEEE ACCESS, 2024, 12 : 122363 - 122376
  • [17] Deep learning for fake news detection: A comprehensive survey
    Hu, Linmei
    Wei, Siqi
    Zhao, Ziwang
    Wu, Bin
    AI Open, 2022, 3 : 133 - 155
  • [18] BerConvoNet: A deep learning framework for fake news classification
    Choudhary, Monika
    Chouhan, Satyendra Singh
    Pilli, S. Emmanuel
    Vipparthi, Santosh Kumar
    APPLIED SOFT COMPUTING, 2021, 110
  • [19] Merging deep learning model for fake news detection
    Amine, Belhakimi Mohamed
    Drif, Ahlem
    Giordano, Silvia
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRICAL ENGINEERING (ICAEE), 2019,
  • [20] Deep Learning for Fake News Detection: Theories and Models
    Huang, Lu
    ACM International Conference Proceeding Series, 2022, : 1322 - 1326