A biodegradable piezoelectric scaffold promotes spinal cord injury nerve regeneration

被引:9
作者
Zhang, Jinjing [1 ,2 ]
Wang, Qiong [3 ]
Tang, Xiaoyi [2 ]
Chai, Mingyang [2 ]
Liu, Nuo [4 ]
Jiang, Zesong [4 ]
Li, Xingjiang [1 ]
Chen, Ping [4 ]
机构
[1] Hefei Univ Technol, Sch Food & Biol Engn, Key Lab Agr Prod Proc, Proc Anhui Prov, Hefei 230601, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230088, Peoples R China
[3] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Pediat Surg, Wuhan 430030, Hubei, Peoples R China
[4] Univ Sci & Technol China, Inst Adv Technol, Hefei 230027, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Piezoelectric scaffolds; Biodegradable; Electrical stimulation; Tissue engineering; Spinal cord injury; PERIPHERAL-NERVE; ELECTRICAL-STIMULATION; FILMS;
D O I
10.1016/j.nanoen.2024.110382
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Neural repair and regeneration remain one of the greatest challenges in regenerative medicine. The incorporation of intelligent scaffolds with noninvasive in vivo electrical stimulation illustrates considerable potential for tissue repair and regeneration. Nevertheless, the development of biomaterials that possess both biodegradable tissue scaffolds and electrical stimulation capabilities at a high level remains a significant obstacle. In this study, we effectively integrated the organic piezoelectric material poly-L-lactic acid (PLLA) with inorganic piezoelectric nanowires (potassium sodium niobate coated with polydopamine, KNN@PDA) to fabricate PLLA/KNN@PDA piezoelectric composite fibers. These fibers exhibit in-situ electrical stimulation capabilities, rendering them suitable for direct application in living tissues. The PLLA/KNN@PDA piezoelectric composite fibers not only function as biodegradable scaffolds for regenerative tissue engineering and platforms for in-situ electrical stimulation to enhance dorsal root ganglion axon growth, proliferation, and neuronal differentiation but also serve as versatile scaffolds for broader tissue engineering applications. In the complete spinal cord transection rat model, the piezoelectric scaffold enabled the recovery of rat motor function, indicating its significant ability to promote tissue formation and regeneration. Therefore, combining biodegradable piezoelectric tissue scaffolds with in situ electrical stimulation has significant therapeutic advantages for spinal cord injury repair and may be extended to other damaged tissues regeneration.
引用
收藏
页数:13
相关论文
共 36 条
[11]   Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise [J].
Gordon, Tessa ;
English, Arthur W. .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2016, 43 (03) :336-350
[12]   Spinal cord injury: molecular mechanisms and therapeutic interventions [J].
Hu, Xiao ;
Xu, Wei ;
Ren, Yilong ;
Wang, Zhaojie ;
He, Xiaolie ;
Huang, Runzhi ;
Ma, Bei ;
Zhao, Jingwei ;
Zhu, Rongrong ;
Cheng, Liming .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2023, 8 (01)
[13]   Enhancing Neural Stem Cell Stimulation with Structured Piezoelectric Composites: An In?Vitro Study [J].
Jarkov, Vlad ;
Waqar, Imaan ;
Penev, Aleksandar ;
Bowen, Chris ;
Adams, Christopher ;
Khanbareh, Hamideh .
ADVANCED ENGINEERING MATERIALS, 2023, 25 (23)
[14]   The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury [J].
Karamian, Brian A. ;
Siegel, Nicholas ;
Nourie, Blake ;
Serruya, Mijail D. ;
Heary, Robert F. ;
Harrop, James S. ;
Vaccaro, Alexander R. .
JOURNAL OF ORTHOPAEDICS AND TRAUMATOLOGY, 2022, 23 (01)
[15]   A conductive piezoelectric hydrogel combined with perampanel and wireless electrical stimulation for spinal cord injury repair [J].
Li, Zehao ;
Wang, Xinyu ;
Zhao, Zheng ;
Liu, Yichao .
CHEMICAL ENGINEERING JOURNAL, 2024, 493
[16]   Piezoelectric composite hydrogel with wireless electrical stimulation enhances motor functional recovery of spinal cord injury [J].
Li, Zehao ;
Li, Guanlin ;
Wang, Xinyu ;
Zhao, Zheng .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 172 :228-239
[17]   Piezotronic effect determined neuron-like differentiation of adult stem cells driven by ultrasound [J].
Liang, Linlin ;
Sun, Chunhui ;
Zhang, Ruitong ;
Han, Shuwei ;
Wang, Jingang ;
Ren, Na ;
Liu, Hong .
NANO ENERGY, 2021, 90
[18]   Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits [J].
Liu, Yang ;
Dzidotor, Godwin ;
Le, Thinh T. ;
Vinikoor, Tra ;
Morgan, Kristin ;
Curry, Eli J. ;
Das, Ritopa ;
McClinton, Aneesah ;
Eisenberg, Ellen ;
Apuzzo, Lorraine N. ;
Tran, Khanh T. M. ;
Prasad, Pooja ;
Flanagan, Tyler J. ;
Lee, Seok-Woo ;
Kan, Ho-Man ;
Chorsi, Meysam T. ;
Lo, Kevin W. H. ;
Laurencin, Cato T. ;
Nguyen, Thanh D. .
SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (627)
[19]   Cell-Traction-Triggered On-Demand Electrical Stimulation for Neuron-Like Differentiation [J].
Liu, Zhirong ;
Cai, Mingjun ;
Zhang, Xiaodi ;
Yu, Xin ;
Wang, Shu ;
Wan, Xingyi ;
Wang, Zhong Lin ;
Li, Linlin .
ADVANCED MATERIALS, 2021, 33 (51)
[20]   Walking naturally after spinal cord injury using a brain-spine interface [J].
Lorach, Henri ;
Galvez, Andrea ;
Spagnolo, Valeria ;
Martel, Felix ;
Karakas, Serpil ;
Intering, Nadine ;
Vat, Molywan ;
Faivre, Olivier ;
Harte, Cathal ;
Komi, Salif ;
Ravier, Jimmy ;
Collin, Thibault ;
Coquoz, Laure ;
Sakr, Icare ;
Baaklini, Edeny ;
Hernandez-Charpak, Sergio Daniel ;
Dumont, Gregory ;
Buschman, Rik ;
Buse, Nicholas ;
Denison, Tim ;
van Nes, Ilse ;
Asboth, Leonie ;
Watrin, Anne ;
Struber, Lucas ;
Sauter-Starace, Fabien ;
Langar, Lilia ;
Auboiroux, Vincent ;
Carda, Stefano ;
Chabardes, Stephan ;
Aksenova, Tetiana ;
Demesmaeker, Robin ;
Charvet, Guillaume ;
Bloch, Jocelyne ;
Courtine, Gregoire .
NATURE, 2023, 618 (7963) :126-+