Machine Learning for Energy Load Prediction and its Interpretation

被引:0
作者
Charytanowicz, Malgorzata [1 ]
Olwert, Anna [2 ]
Radziszewska, Weronika [3 ]
Jarnicka, Jolanta [3 ]
Gajowniczek, Krzysztof [4 ]
Zabkowski, Tomasz [4 ]
Brozyna, Jacek [5 ]
Mentel, Grzegorz [5 ]
Matejko, Grzegorz [6 ]
机构
[1] Research Institute Pas, Center for Methods of Data Analysis Systems, Warsaw, Poland
[2] Research Institute Pas, Department of Computer Science Systems, Warsaw, Poland
[3] Research Institute Pas, Center for Computer Modelling Systems, Warsaw, Poland
[4] Warsaw University of Life Sciences, Institute of Information Technology, Warsaw, Poland
[5] Rzeszow University of Technology, Department of Quantitative Methods, Rzeszów, Poland
[6] Polskie Towarzystwo Cyfrowe, Lublin, Poland
来源
2022 IEEE 11th International Conference on Intelligent Systems, IS 2022 | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
11th IEEE International Conference on Intelligent Systems, IS 2022
中图分类号
学科分类号
摘要
Adaptive boosting - Additives - Electric load forecasting - Electric power plant loads - Machine learning - Regression analysis
引用
收藏
相关论文
共 50 条
  • [21] Development of Machine Learning and Deep Learning Prediction Models for PM2.5 in Ho Chi Minh City, Vietnam
    Nguyen, Phuc Hieu
    Dao, Nguyen Khoi
    Nguyen, Ly Sy Phu
    Atmosphere, 15 (10):
  • [22] Short- and Medium-Term Electrical Load Forecasting in Bangladesh Using Machine Learning Approaches
    Cheragee, Sheikh Hasib
    Pall, Shuvo Chandra
    Kanchan, Muntasir Hasan
    Islam, Md. Samiul
    Tarek, Muhammad Masud
    Joy, Shoriful Huq
    Rahman, Md Toufiqur
    2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems: Innovation for Sustainability, iCACCESS 2024, 2024,
  • [23] Machine Learning Sensors
    Stewart, Matthew
    Warden, Pete
    Plancher, Brian
    Katti, Sachin
    Reddi, Vijay Janapa
    COMMUNICATIONS OF THE ACM, 2023, 66 (11) : 25 - 28
  • [24] Machine learning in tribology
    Volz S.
    Molitor D.
    Launhardt J.
    Groche P.
    WT Werkstattstechnik, 2022, 112 (10): : 643 - 648
  • [25] Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms
    Liu, Rui
    Li, Gulin
    Wei, Liangshuai
    Xu, Yuan
    Gou, Xiaojuan
    Luo, Shubin
    Yang, Xin
    Journal of Hydrology, 2022, 610
  • [26] Enhanced Memetic Algorithm-Based Extreme Learning Machine Model for Smart Grid Stability Prediction
    Mishra, Manohar
    Nayak, Janmenjoy
    Naik, Bignaraj
    Patnaik, Bhaskar
    International Transactions on Electrical Energy Systems, 2022, 2022
  • [27] Using Blockchain and Distributed Machine Learning to Evaluate Performance Management and Its Effect on the Construction Industry
    Tongkachok, Korakod
    Ullah, Asad
    Kumar, K. V. Pradeep
    Mishra, Hari Govind
    Pallathadka, Harikumar
    Kapila, Dhiraj
    Smart Innovation, Systems and Technologies, 2023, 290 : 447 - 455
  • [28] Comparing Multivariate Time Series Analysis and Machine Learning Performance for Technical Debt Prediction: The SQALE Index Case
    Robredo, Mikel
    Saarimäki, Nyyti
    Peñaloza, Rafael
    Taibi, Davide
    Lenarduzzi, Valentina
    Proceedings - 2024 ACM/IEEE International Conference on Technical Debt, TechDebt 2024, : 45 - 46
  • [29] Hybrid Approach for Link Prediction using Supervised Machine Learning in Social Networks: Combining Global and Local Features
    Kumar, Shambhu
    Jain, Arti
    Bisht, Dinesh
    ACM International Conference Proceeding Series, 2023, : 591 - 597
  • [30] P-Flash – A machine learning-based model for flashover prediction using recovered temperature data
    Wang, Jun
    Tam, Wai Cheong
    Jia, Youwei
    Peacock, Richard
    Reneke, Paul
    Fu, Eugene Yujun
    Cleary, Thomas
    Fire Safety Journal, 2021, 122