Achiral and chiral ligands synergistically harness chiral self-assembly of inorganics

被引:1
|
作者
Zhang, Jun [1 ,2 ,3 ,4 ]
Wu, Kai [1 ,2 ,3 ]
Gao, Xiaoqing [1 ,2 ]
Zhang, Min [1 ,2 ,5 ]
Zhou, Xin [1 ,2 ,3 ]
Bertram, Florian [4 ]
Shen, Chen [4 ]
Zhou, Yunlong [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Wenzhou Inst, Zhejiang Engn Res Ctr Tissue Repair Mat, Wenzhou, Peoples R China
[2] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou Key Lab Biomat & Engn, Wenzhou, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[4] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany
[5] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai, Peoples R China
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 42期
基金
中国国家自然科学基金;
关键词
CIRCULAR-DICHROISM; SUPERLATTICES; NANOMATERIALS;
D O I
10.1126/sciadv.ado5948
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chiral structures and functions are essential natural components in biominerals and biological crystals. Chiral molecules direct inorganics through chiral growth of facets or screw dislocation of crystal clusters. As chirality promoters, they initiate an asymmetric hierarchical self-assembly in a quasi-thermodynamic steady state. However, achieving chiral assembly requires a delicate balance between intricate interactions. This complexity causes the roles of achiral-chiral and inorganic components in crystallization to remain ambiguous. Here, we elucidate a definitive mechanism using an achiral-chiral ligand strategy to assemble inorganics into hierarchical, self-organized superstructures. Achiral ligands cluster inorganic building blocks, while chiral ligands impart chiral rotation. Achiral and chiral ligands can flexibly modulate the chirality of superstructures by fully using their competition in coordination chemistry. This dual-ligand strategy offers a versatile framework for engineering chiroptical nanomaterials tailored to optical devices and metamaterials with optical activities across a broad wavelength range, with applications in imaging, detection, catalysis, and sensing.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures
    Vila-Liarte, David
    Kotov, Nicholas A.
    Liz-Marzan, Luis M.
    CHEMICAL SCIENCE, 2022, 13 (03) : 595 - 610
  • [2] Self-assembly of Chiral bisbenzocoumarins and recognition to Chiral phenylethanol thereof
    Zhang, Huimin
    Li, Yan
    Ming, Yuan
    Chen, Shaojin
    Hu, Zhiqiang
    Guo, Zongxia
    DYES AND PIGMENTS, 2023, 216
  • [3] Self-Assembly of Chiral Plasmonic Nanostructures
    Lan, Xiang
    Wang, Qiangbin
    ADVANCED MATERIALS, 2016, 28 (47) : 10499 - 10507
  • [4] Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer
    Deng, Ming
    Zhang, Li
    Jiang, Yuqian
    Liu, Minghua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (48) : 15062 - 15066
  • [5] Sequence-Dependent Self-Assembly of Chiral Polyimides
    Yan, Jijun
    Kang, Chuanqing
    Bian, Zheng
    Jin, Rizhe
    Ma, Xiaoye
    Du, Zhijun
    Yao, Haibo
    Gao, Lianxun
    CHEMISTRY-AN ASIAN JOURNAL, 2017, 12 (08) : 841 - 845
  • [6] Self-Assembly of Dendritic Crowns into Chiral Supramolecular Spheres
    Percec, Virgil
    Imam, Mohammad R.
    Peterca, Mihai
    Wilson, Daniela A.
    Heiney, Paul A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) : 1294 - 1304
  • [7] Chiral plasmonic nanostructures via DNA self-assembly
    Wang, Meng
    Dong, Jinyi
    Wang, Qiangbin
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (10): : 1001 - 1007
  • [8] Self-assembly of plasmonic chiral superstructures with intense chiroptical activity
    Chen, Zhong
    Lu, Xingyu
    NANO EXPRESS, 2020, 1 (03):
  • [9] Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides
    Huang, Zhehao
    Che, Shunai
    CHEMICAL RECORD, 2015, 15 (04) : 665 - 674
  • [10] Mesochiral phases from the self-assembly of chiral block copolymers
    Yang, Kai-Chieh
    Chiu, Po-Ting
    Ho, Rong-Ming
    POLYMER CHEMISTRY, 2020, 11 (09) : 1542 - 1554