Unifying finite-temperature dynamical and excited-state quantum phase transitions

被引:0
作者
Corps, Angel L. [1 ,2 ]
Relano, Armando [2 ,3 ]
Halimeh, Jad C. [4 ,5 ,6 ,7 ]
机构
[1] CSIC, Inst Estruct Mat IEM, Serrano 123, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Grp Interdisciplinar Sistemas Complejos GISC, Ave Complutense S-N, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, Dept Estruct Mat Fis Term & Elect, Ave Complutense S-N, E-28040 Madrid, Spain
[4] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[6] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY;
D O I
10.1103/PhysRevResearch.6.043080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, various notions of dynamical phase transitions have emerged to describe far-from-equilibrium criticality. A unifying framework connecting these different concepts is still missing, and would provide significant progress toward understanding far-from-equilibrium quantum many-body universality. Initializing our system in a thermal ensemble and subsequently performing quantum quenches in the Lipkin-Meshkov-Glick model, we establish a direct connection between excited-state quantum phase transitions (ESQPTs) and two major types of dynamical phase transitions (DPTs), by relating the phases of the latter to the critical energies and conservation laws in the former. Our work provides further insight into how various concepts of non-ground-state criticality are intimately connected, paving the way for a unified framework of far-from-equilibrium universality.
引用
收藏
页数:9
相关论文
共 107 条
[81]   Non-thermal excited-state quantum phase transitions [J].
Puebla, Ricardo ;
Relano, Armando .
EPL, 2013, 104 (05)
[82]   Excited-state phase transition leading to symmetry-breaking steady states in the Dicke model [J].
Puebla, Ricardo ;
Relano, Armando ;
Retamosa, Joaquin .
PHYSICAL REVIEW A, 2013, 87 (02)
[83]   Decoherence as a signature of an excited-state quantum phase transition [J].
Relano, A. ;
Arias, J. M. ;
Dukelsky, J. ;
Garcia-Ramos, J. E. ;
Perez-Fernandez, P. .
PHYSICAL REVIEW A, 2008, 78 (06)
[84]   Structure of eigenstates and quench dynamics at an excited-state quantum phase transition [J].
Santos, Lea F. ;
Perez-Bernal, Francisco .
PHYSICAL REVIEW A, 2015, 92 (05)
[85]   Dynamical quantum phase transitions in the Kitaev honeycomb model [J].
Schmitt, Markus ;
Kehrein, Stefan .
PHYSICAL REVIEW B, 2015, 92 (07)
[86]   Dynamical transitions and quantum quenches in mean-field models [J].
Sciolla, Bruno ;
Biroli, Giulio .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[87]   Quantum Quenches and Off-Equilibrium Dynamical Transition in the Infinite-Dimensional Bose-Hubbard Model [J].
Sciolla, Bruno ;
Biroli, Giulio .
PHYSICAL REVIEW LETTERS, 2010, 105 (22)
[88]   Bulk-boundary correspondence for dynamical phase transitions in one-dimensional topological insulators and superconductors [J].
Sedlmayr, N. ;
Jaeger, P. ;
Maiti, M. ;
Sirker, J. .
PHYSICAL REVIEW B, 2018, 97 (06)
[89]   Fate of dynamical phase transitions at finite temperatures and in open systems [J].
Sedlmayr, N. ;
Fleischhauer, M. ;
Sirker, J. .
PHYSICAL REVIEW B, 2018, 97 (04)
[90]   Exploring dynamical phase transitions and prethermalization with quantum noise of excitations [J].
Smacchia, Pietro ;
Knap, Michael ;
Demler, Eugene ;
Silva, Alessandro .
PHYSICAL REVIEW B, 2015, 91 (20)