Unifying finite-temperature dynamical and excited-state quantum phase transitions

被引:0
作者
Corps, Angel L. [1 ,2 ]
Relano, Armando [2 ,3 ]
Halimeh, Jad C. [4 ,5 ,6 ,7 ]
机构
[1] CSIC, Inst Estruct Mat IEM, Serrano 123, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Grp Interdisciplinar Sistemas Complejos GISC, Ave Complutense S-N, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, Dept Estruct Mat Fis Term & Elect, Ave Complutense S-N, E-28040 Madrid, Spain
[4] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[6] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY;
D O I
10.1103/PhysRevResearch.6.043080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, various notions of dynamical phase transitions have emerged to describe far-from-equilibrium criticality. A unifying framework connecting these different concepts is still missing, and would provide significant progress toward understanding far-from-equilibrium quantum many-body universality. Initializing our system in a thermal ensemble and subsequently performing quantum quenches in the Lipkin-Meshkov-Glick model, we establish a direct connection between excited-state quantum phase transitions (ESQPTs) and two major types of dynamical phase transitions (DPTs), by relating the phases of the latter to the critical energies and conservation laws in the former. Our work provides further insight into how various concepts of non-ground-state criticality are intimately connected, paving the way for a unified framework of far-from-equilibrium universality.
引用
收藏
页数:9
相关论文
共 107 条
[21]   Quantum quenches as classical critical films [J].
Gambassi, A. ;
Calabrese, P. .
EPL, 2011, 95 (06)
[22]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS [J].
GLICK, AJ ;
LIPKIN, HJ ;
MESHKOV, N .
NUCLEAR PHYSICS, 1965, 62 (02) :211-&
[23]   Dynamical Topological Quantum Phase Transitions in Nonintegrable Models [J].
Hagymasi, I ;
Hubig, C. ;
Legeza, O. ;
Schollwoeck, U. .
PHYSICAL REVIEW LETTERS, 2019, 122 (25)
[24]  
Halimeh JC, 2022, QUANTUM-AUSTRIA, V6
[25]   Dynamical phase transitions in quantum spin models with antiferromagnetic long-range interactions [J].
Halimeh, Jad C. ;
Van Damme, Maarten ;
Guo, Lingzhen ;
Lang, Johannes ;
Hauke, Philipp .
PHYSICAL REVIEW B, 2021, 104 (11)
[26]   Local measures of dynamical quantum phase transitions [J].
Halimeh, Jad C. ;
Trapin, Daniele ;
Van Damme, Maarten ;
Heyl, Markus .
PHYSICAL REVIEW B, 2021, 104 (07)
[27]   Quantum aging and dynamical universality in the long-range O(N → ∞) model [J].
Halimeh, Jad C. ;
Maghrebi, Mohammad F. .
PHYSICAL REVIEW E, 2021, 103 (05)
[28]   Quasiparticle origin of dynamical quantum phase transitions [J].
Halimeh, Jad C. ;
Van Damme, Maarten ;
Zauner-Stauber, Valentin ;
Vanderstraeten, Laurens .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[29]   Dynamical phase diagram of quantum spin chains with long-range interactions [J].
Halimeh, Jad C. ;
Zauner-Stauber, Valentin .
PHYSICAL REVIEW B, 2017, 96 (13)
[30]   Prethermalization and persistent order in the absence of a thermal phase transition [J].
Halimeh, Jad C. ;
Zauner-Stauber, Valentin ;
McCulloch, Ian P. ;
de Vega, Ines ;
Schollwoeck, Ulrich ;
Kastner, Michael .
PHYSICAL REVIEW B, 2017, 95 (02)