Unifying finite-temperature dynamical and excited-state quantum phase transitions

被引:0
作者
Corps, Angel L. [1 ,2 ]
Relano, Armando [2 ,3 ]
Halimeh, Jad C. [4 ,5 ,6 ,7 ]
机构
[1] CSIC, Inst Estruct Mat IEM, Serrano 123, E-28006 Madrid, Spain
[2] Univ Complutense Madrid, Grp Interdisciplinar Sistemas Complejos GISC, Ave Complutense S-N, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, Dept Estruct Mat Fis Term & Elect, Ave Complutense S-N, E-28040 Madrid, Spain
[4] Ludwig Maximilians Univ Munchen, Dept Phys, Theresienstr 37, D-80333 Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys ASC, Theresienstr 37, D-80333 Munich, Germany
[6] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[7] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 04期
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY;
D O I
10.1103/PhysRevResearch.6.043080
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, various notions of dynamical phase transitions have emerged to describe far-from-equilibrium criticality. A unifying framework connecting these different concepts is still missing, and would provide significant progress toward understanding far-from-equilibrium quantum many-body universality. Initializing our system in a thermal ensemble and subsequently performing quantum quenches in the Lipkin-Meshkov-Glick model, we establish a direct connection between excited-state quantum phase transitions (ESQPTs) and two major types of dynamical phase transitions (DPTs), by relating the phases of the latter to the critical energies and conservation laws in the former. Our work provides further insight into how various concepts of non-ground-state criticality are intimately connected, paving the way for a unified framework of far-from-equilibrium universality.
引用
收藏
页数:9
相关论文
共 107 条
[1]   Quantum quench dynamics in the transverse field Ising model at nonzero temperatures [J].
Abeling, Nils O. ;
Kehrein, Stefan .
PHYSICAL REVIEW B, 2016, 93 (10)
[2]   Dynamical quantum phase transitions and the Loschmidt echo: A transfer matrix approach [J].
Andraschko, F. ;
Sirker, J. .
PHYSICAL REVIEW B, 2014, 89 (12)
[3]   Quantum Criticality and Dynamical Instability in the Kicked-Top Model [J].
Bastidas, Victor Manuel ;
Perez-Fernandez, Pedro ;
Vogl, Malte ;
Brandes, Tobias .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[4]   Emergent topology and dynamical quantum phase transitions in two-dimensional closed quantum systems [J].
Bhattacharya, Utso ;
Dutta, Amit .
PHYSICAL REVIEW B, 2017, 96 (01)
[5]  
Halimeh JC, 2019, Arxiv, DOI arXiv:1903.03109
[6]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135
[7]  
Cardy J. L., 1996, Cambridge Lecture Notes in Physics
[8]   Excited-state quantum phase transitions [J].
Cejnar, Pavel ;
Stransky, Pavel ;
Macek, Michal ;
Kloc, Michal .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (13)
[9]   Equilibration and coarsening in the quantum O(N) model at infinite N [J].
Chandran, Anushya ;
Nanduri, Arun ;
Gubser, S. S. ;
Sondhi, S. L. .
PHYSICAL REVIEW B, 2013, 88 (02)
[10]   Dynamical Crossovers in Prethermal Critical States [J].
Chiocchetta, Alessio ;
Gambassi, Andrea ;
Diehl, Sebastian ;
Marino, Jamir .
PHYSICAL REVIEW LETTERS, 2017, 118 (13)