Polymerized Phthalocyanine Manganese/Graphene Composites for Single-Atom Oxygen Reduction Catalysts

被引:0
|
作者
Duan, Wenjie [1 ]
Sun, Yinggang [1 ]
Li, Zhongfang [1 ]
Sun, Peng [1 ]
Zhuang, Yanqiong [1 ]
Zhi, Xulei [1 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
zinc-air batteries; oxygen reduction reaction (ORR)catalysts; planar fully conjugated PPcMn; PPcMn/3D-G; antioxidant properties;
D O I
10.1021/acsanm.4c04776
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Oxygen reduction reaction (ORR) catalysts are a key research area of fuel cells and zinc-air batteries (ZABs). The planar fully conjugate poly(manganese phthalocyanine) (PPcMn) is synthesized. Thermogravimetry (TG) shows that PPcMn is not decomposed at 400 degrees C. The catalyst PPcMn/3D-G (three-dimensional graphene) is prepared. The solid-state ultraviolet spectroscopy and Raman spectra indicate strong pi-pi interactions between PPcMn and 3D-G. X-ray photoelectron spectroscopy (XPS) demonstrates that PPcMn on the surface of 3D-G does not decompose during heat treatment (HT). The combination of TG and XPS proves that the active center of the catalyst is a single-atom Mn-N4 structure. In 0.1 M KOH, the half-wave potential (E 1/2) of PPcMn/3D-G is 0.863 V vs RHE. The potential gap (Delta E = E j = 10 - E 1/2) of PPcMn/3D-G is 0.77 V. Density functional theory (DFT) calculations demonstrate that PPcMn has a low effect on the energy barriers for intermediates in the catalytic ORR process. PPcMn has a higher electron cloud density of the Mn-N4 center, and the catalytic ORR performance is enhanced. Zinc-air batteries (ZABs) using PPcMn/3D-G as a catalyst exhibit excellent performance. In the antioxidant test, PPcMn/3D-G does not produce hydroxyl radicals during the catalytic H2O2 oxidation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] (mPBI) membranes. Therefore, PPcMn/3D-G is an excellent ORR single-atom electrocatalyst for fuel cells.
引用
收藏
页码:24833 / 24846
页数:14
相关论文
共 50 条
  • [41] High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction
    Han, Guokang
    Zheng, Yu
    Zhang, Xue
    Wang, Zhiqiang
    Gong, Yue
    Du, Chunyu
    Banis, Mohammad Norouzi
    Yiu, Yun-Mui
    Sham, Tsun-Kong
    Gu, Lin
    Sun, Yongrong
    Wang, Yajing
    Wang, Jinpeng
    Gao, Yunzhi
    Yin, Geping
    Sun, Xueliang
    NANO ENERGY, 2019, 66
  • [42] A review of advancements in theoretical simulation of oxygen reduction reaction and oxygen evolution reaction single-atom catalysts
    Ma, Ninggui
    Xiong, Yu
    Wang, Yuhang
    Zhang, Yaqin
    Wang, Qianqian
    Luo, Shuang
    Zhao, Jun
    Huang, Changxiong
    Fan, Jun
    MATERIALS TODAY SUSTAINABILITY, 2024, 27
  • [43] Single-Atom Catalysts Supported by Graphene and Hexagonal Boron Nitride: Structural Stability in the Oxygen Environment
    Sredojevic, Dusan N.
    Belic, Milivoj R.
    Sljivancanin, Zeljko
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (20): : 8637 - 8644
  • [44] Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction
    Darby, Matthew T.
    Stamatakis, Michail
    CHEMPHYSCHEM, 2021, 22 (05) : 499 - 508
  • [45] CATALYSIS Graphene aerogel keeps single-atom catalysts stable
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2019, 97 (32) : 10 - 10
  • [46] Graphene-supported single-atom catalysts and applications in electrocatalysis
    Zhang, Qin
    Zhang, Xiaoxiang
    Wang, Junzhong
    Wang, Congwei
    NANOTECHNOLOGY, 2021, 32 (03)
  • [47] Laser Synthesis of Nonprecious Metal-Based Single-Atom Catalysts for Oxygen Reduction Reaction
    Sha, Yang
    Moissinac, Francis
    Zhu, Menghui
    Huang, Kun
    Guo, Hengyi
    Wang, Lingtao
    Liu, Yuxiang
    Li, Lin
    Thomas, Andrew
    Liu, Zhu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (44) : 51004 - 51012
  • [48] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Microalgae-derived single-atom oxygen reduction catalysts for zinc-air batteries
    Ma, Linlin
    Hu, Xiao
    Min, Yuan
    Zhang, Xinyu
    Liu, Wujun
    Lam, Paul Kwan Sing
    Jung, Molly Meng
    Zeng, Raymond Jianxiong
    Ye, Ruquan
    CARBON, 2023, 203 : 827 - 834
  • [50] Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond
    Jinxing Gu
    Yinghe Zhao
    Shiru Lin
    Jingsong Huang
    Carlos R.Cabrera
    Bobby G.Sumpter
    Zhongfang Chen
    Journal of Energy Chemistry, 2021, 63 (12) : 285 - 293