Rydberg electromagnetically induced transparency based laser lock to Zeeman sublevels with 0.6 GHz scanning range

被引:0
作者
Vylegzhanin, Alexey [1 ]
Chormaic, Sile Nic [1 ]
Brown, Dylan J. [1 ]
机构
[1] Technol Grad Univ, Okinawa Inst Sci, Onna, Okinawa 9040495, Japan
基金
日本学术振兴会;
关键词
FREQUENCY; SPECTROSCOPY; TRANSITION; NARROW; ATOMS; EIT;
D O I
10.1063/5.0229024
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We propose a technique for frequency locking a laser to the Zeeman sublevel transitions between the 5P(3/2) intermediate and 32D(5/2) Rydberg states in Rb-87. This method allows for continuous frequency tuning over 0.6 GHz by varying an applied external magnetic field. In the presence of the applied field, the electromagnetically induced transparency (EIT) spectrum of an atomic vapor splits via the Zeeman effect according to the strength of the magnetic field and the polarization of the pump and probe lasers. We show that the 480 nm pump laser, responsible for transitions between the Zeeman sublevels of the intermediate state and the Rydberg state, can be locked to the Zeeman-split EIT peaks. The short-term frequency stability of the laser lock is 0.15 MHz, and the long-term stability is within 0.5 MHz. The linewidth of the laser lock is similar to 0.8 and similar to 1.8 MHz in the presence and absence of the external magnetic field, respectively. In addition, we show that in the absence of an applied magnetic field and adequate shielding, the frequency shift of the lock point has a peak-to-peak variation of 1.6 MHz depending on the polarization of the pump field, while when locked to Zeeman sublevels, this variation is reduced to 0.6 MHz. The proposed technique is useful for research involving Rydberg atoms, where large continuous tuning of the laser frequency with stable locking is required.
引用
收藏
页数:7
相关论文
共 45 条
  • [1] Rydberg atom quantum technologies
    Adams, C. S.
    Pritchard, J. D.
    Shaffer, J. P.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (01)
  • [2] Production and trapping of cold circular Rydberg atoms
    Anderson, D. A.
    Schwarzkopf, A.
    Sapiro, R. E.
    Raithel, G.
    [J]. PHYSICAL REVIEW A, 2013, 88 (03):
  • [3] Tunable frequency stabilization to Zeeman sublevel transitions between an intermediate state and Rydberg states
    Bao, Shanxia
    Zhang, Hao
    Zhou, Jian
    Zhang, Linjie
    Zhao, Jianming
    Xiao, Liantuan
    Jia, Suotang
    [J]. LASER PHYSICS, 2017, 27 (01)
  • [4] Observation of ultralong-range Rydberg molecules
    Bendkowsky, Vera
    Butscher, Bjoern
    Nipper, Johannes
    Shaffer, James P.
    Loew, Robert
    Pfau, Tilman
    [J]. NATURE, 2009, 458 (7241) : 1005 - U76
  • [5] Picosecond-Scale Ultrafast Many-Body Dynamics in an Ultracold Rydberg-Excited Atomic Mott Insulator
    Bharti, V.
    Sugawa, S.
    Mizoguchi, M.
    Kunimi, M.
    Zhang, Y.
    de Leseleuc, S.
    Tomita, T.
    Franz, T.
    Weidemueller, M.
    Ohmori, K.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (12)
  • [6] An introduction to Pound-Drever-Hall laser frequency stabilization
    Black, ED
    [J]. AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) : 79 - 87
  • [7] OBSERVATION OF ELECTROMAGNETICALLY INDUCED TRANSPARENCY
    BOLLER, KJ
    IMAMOGLU, A
    HARRIS, SE
    [J]. PHYSICAL REVIEW LETTERS, 1991, 66 (20) : 2593 - 2596
  • [8] Ultrafast energy exchange between two single Rydberg atoms on a nanosecond timescale
    Chew, Y.
    Tomita, T.
    Mahesh, T. P.
    Sugawa, S.
    de Leseleuc, S.
    Ohmori, K.
    [J]. NATURE PHOTONICS, 2022, 16 (10) : 724 - +
  • [9] Magnetic trapping of long-lived cold Rydberg atoms
    Choi, JH
    Guest, JR
    Povilus, AP
    Hansis, E
    Raithel, G
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (24)
  • [10] Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor
    Corwin, KL
    Lu, ZT
    Hand, CF
    Epstein, RJ
    Wieman, CE
    [J]. APPLIED OPTICS, 1998, 37 (15): : 3295 - 3298