A diel multi-tissue genome-scale metabolic model of Vitis vinifera

被引:0
|
作者
Sampaio, Marta [1 ]
Rocha, Miguel [1 ,2 ]
Dias, Oscar [1 ,2 ]
机构
[1] Univ Minho, Ctr Biol Engn, Campus Gualtar, Braga, Portugal
[2] Associate Lab, LABBELS, Braga Guimaraes, Portugal
关键词
RECONSTRUCTION; ARABIDOPSIS; PATHWAYS; NETWORK; LIGHT; DATABASE; PERSPECTIVES; PREDICTION; FLUXES; GROWTH;
D O I
10.1371/journal.pcbi.1012506
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Vitis vinifera, also known as grapevine, is widely cultivated and commercialized, particularly to produce wine. As wine quality is directly linked to fruit quality, studying grapevine metabolism is important to understand the processes underlying grape composition. Genome-scale metabolic models (GSMMs) have been used for the study of plant metabolism and advances have been made, allowing the integration of omics datasets with GSMMs. On the other hand, Machine learning (ML) has been used to analyze and integrate omics data, and while the combination of ML with GSMMs has shown promising results, it is still scarcely used to study plants. Here, the first GSSM of V. vinifera was reconstructed and validated, comprising 7199 genes, 5399 reactions, and 5141 metabolites across 8 compartments. Tissue-specific models for the stem, leaf, and berry of the Cabernet Sauvignon cultivar were generated from the original model, through the integration of RNA-Seq data. These models have been merged into diel multi-tissue models to study the interactions between tissues at light and dark phases. The potential of combining ML with GSMMs was explored by using ML to analyze the fluxomics data generated by green and mature grape GSMMs and provide insights regarding the metabolism of grapes at different developmental stages. Therefore, the models developed in this work are useful tools to explore different aspects of grapevine metabolism and understand the factors influencing grape quality.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    Bernstein, David B.
    Sulheim, Snorre
    Almaas, Eivind
    Segre, Daniel
    GENOME BIOLOGY, 2021, 22 (01)
  • [22] Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis
    Balagurunathan, Balaji
    Jonnalagadda, Sudhakar
    Tan, Lily
    Srinivasan, Rajagopalan
    MICROBIAL CELL FACTORIES, 2012, 11
  • [23] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Simonas Marcišauskas
    Boyang Ji
    Jens Nielsen
    BMC Bioinformatics, 20
  • [24] Construction and application of the genome-scale metabolic model of Streptomyces radiopugnans
    Zhang, Zhidong
    Guo, Qi
    Qian, Jinyi
    Ye, Chao
    Huang, He
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [25] Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana
    Shah, Ab Rauf
    Ahmad, Ahmad
    Srivastava, Shireesh
    Ali, B. M. Jaffar
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 26 : 354 - 364
  • [26] Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium
    Montagud, Arnau
    Navarro, Emilio
    Fernandez de Cordoba, Pedro
    Urchueguia, Javier F.
    Patil, Kiran Raosaheb
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [27] Genome-scale metabolic model of oleaginous yeast Papiliotrema laurentii
    Ventorim, Rafaela Zandonade
    de Moura Ferreira, Mauricio Alexander
    Menezes de Almeida, Eduardo Luis
    Kerkhoven, Eduard J.
    da Silveira, Wendel Batista
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 180
  • [28] Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model
    Marcisauskas, Simonas
    Ji, Boyang
    Nielsen, Jens
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [29] Further developments towards a genome-scale metabolic model of yeast
    Dobson, Paul D.
    Smallbone, Kieran
    Jameson, Daniel
    Simeonidis, Evangelos
    Lanthaler, Karin
    Pir, Pinar
    Lu, Chuan
    Swainston, Neil
    Dunn, Warwick B.
    Fisher, Paul
    Hull, Duncan
    Brown, Marie
    Oshota, Olusegun
    Stanford, Natalie J.
    Kell, Douglas B.
    King, Ross D.
    Oliver, Stephen G.
    Stevens, Robert D.
    Mendes, Pedro
    BMC SYSTEMS BIOLOGY, 2010, 4
  • [30] Addressing uncertainty in genome-scale metabolic model reconstruction and analysis
    David B. Bernstein
    Snorre Sulheim
    Eivind Almaas
    Daniel Segrè
    Genome Biology, 22