Effect of modified Fe2O3/activated carbon catalysts for low-temperature CO selective catalytic reduction of NOx in underground diesel vehicle exhaust

被引:0
|
作者
Nie, Wen [1 ,2 ,3 ]
Lian, Jie [1 ,2 ,3 ]
Hua, Yun [1 ,2 ,3 ]
Liu, Chengyi [1 ,2 ,3 ]
Yan, Xiao [1 ,2 ,3 ]
Bao, Qiu [1 ,2 ,3 ]
Niu, Wenjin [1 ,2 ,3 ]
Tian, Qifan [1 ,2 ,3 ]
Zhang, Xiaohan [1 ,2 ,3 ]
Li, Ruoxi [1 ,2 ,3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Safety & Environm Engn, Qingdao 266590, Shandong Prov, Peoples R China
[2] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control Shand, Qingdao 266590, Peoples R China
[3] Shandong Univ Sci & Technol, Minist Sci & Technol, Qingdao 266590, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 06期
基金
中国博士后科学基金;
关键词
Diesel vehicle exhaust; Fe2O3/AC catalyst; Modified; Low temperature; CO; NOx reduction; ACTIVATED SEMI-COKE; SO2; RESISTANCE; NH3-SCR; FE2O3; DECOMPOSITION; CERIA; CEO2; NANOPARTICLES; TOLERANCE; OXIDATION;
D O I
10.1016/j.jece.2024.114695
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The elimination of CO and NOx has practical significance for the control of exhaust pollutants from underground diesel vehicles. Catalytic reduction of NO by CO (CO-SCR) using activated carbon (AC) catalysts is considered a cost-effective and environmentally friendly denitrification method. In this study, Fe2O3/AC-based catalysts were prepared using an impregnation method and modified with different metals to investigate their impact on catalyst performance. The results demonstrated that the catalyst exhibited the highest denitrification efficiency when loaded with 10 % Fe. The Mn-doped 10Fe/AC catalyst exhibited the best catalytic performance, with the highest NO conversion of 97.5 % and CO removal rate of 83.3 % at 240 C-degrees. The effects of loading Mn, Ce, and La on the physical and chemical properties of the catalysts were analyzed using various characterization tools, and the reaction mechanism of the catalysts was investigated by in situ DRIFTS technique. The findings revealed that the strong synergistic interaction occurring between Mn and Fe led to an increase in the surface-adsorbed oxygen (O-alpha) and Fe3+, which produced more oxygen vacancies on the catalyst, thus improving the redox properties. The in-situ DRIFT results indicated that the addition of Mn enhanced the adsorption capacity of active NO and CO. For the CO-SCR reaction on Fe-Mn/AC catalyst, the E-R mechanism was followed at low temperature and the L-H mechanism was followed at high temperature.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Low-Temperature Selective Catalytic Reduction of NO with NH3 over Mn2O3-Doped Fe2O3 Hexagonal Microsheets
    Li, Yi
    Wan, Yuan
    Li, Yanping
    Zhan, Sihui
    Guan, Qingxin
    Tian, Yang
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) : 5224 - 5233
  • [22] The promotion effect of Cr additive on CeZr2Ox catalyst for the low-temperature selective catalytic reduction of NOx with NH3
    Wang, Zhong-yi
    Guo, Rui-tang
    Guan, Zhen-zhen
    Shi, Xu
    Pan, Wei-guo
    Fu, Zai-guo
    Qin, Hao
    Liu, Xing-yu
    APPLIED SURFACE SCIENCE, 2019, 485 : 133 - 140
  • [23] Catalytic performance of Ag/Fe2O3 for the low temperature oxidation of carbon monoxide
    Biabani-Ravandi, Abolfazl
    Rezaei, Mehran
    Fattah, Zohreh
    CHEMICAL ENGINEERING JOURNAL, 2013, 219 : 124 - 130
  • [24] Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Cr-promoted Fe/AC catalysts
    Ge, Tingting
    Zhu, Baozhong
    Sun, Yunlan
    Song, Weiyi
    Fang, Qilong
    Zhong, Yuxiu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2019, 26 (32) : 33067 - 33075
  • [25] Sm-MnOx catalysts for low-temperature selective catalytic reduction of NOx with NH3: Effect of precipitation agent
    Ding, Junbin
    Yang, Xinwei
    Wang, Aiyong
    Yang, Can
    Guo, Yanglong
    Guo, Yun
    Wang, Li
    Zhan, Wangcheng
    JOURNAL OF RARE EARTHS, 2022, 40 (08) : 1199 - 1210
  • [26] Transition metals (Co, Zr, Ti) modified iron-samarium oxide as efficient catalysts for selective catalytic reduction of NOx at low-temperature
    Wei, Ying
    Fan, Hao
    Wang, Rui
    APPLIED SURFACE SCIENCE, 2018, 459 : 63 - 73
  • [27] Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction
    Soria, M. A.
    Perez, P.
    Carabineiro, S. A. C.
    Maldonado-Hodar, F. J.
    Mendes, A.
    Madeira, Luis M.
    APPLIED CATALYSIS A-GENERAL, 2014, 470 : 45 - 55
  • [28] Iron oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3
    Husnain, Naveed
    Wang, Enlu
    Li, Kai
    Anwar, Muhammad Tuoqeer
    Mehmood, Aamir
    Gul, Mustabshirha
    Li, Deli
    Mao, Jinda
    REVIEWS IN CHEMICAL ENGINEERING, 2019, 35 (02) : 239 - 264
  • [29] Morphology control of manganese-based catalysts for low-temperature selective catalytic reduction of NOx
    Jiang, Haoxi
    Wang, Yaodong
    Zhou, Jiali
    Chen, Yifei
    Zhang, Minhua
    MATERIALS LETTERS, 2018, 233 : 250 - 253
  • [30] Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts
    Singhania, Amit
    Gupta, Shipra Mital
    CATALYSIS LETTERS, 2018, 148 (03) : 946 - 952