Advancing document-level relation extraction with a syntax-enhanced multi-hop reasoning network

被引:0
作者
Zhong Y. [1 ]
Shen B. [1 ,2 ]
Wang T. [1 ]
机构
[1] School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing
[2] Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing
基金
中国国家自然科学基金;
关键词
Attention mechanism; document-level relation extraction; multi-hop reasoning; syntactic information;
D O I
10.3233/JIFS-237167
中图分类号
学科分类号
摘要
Document-level relation extraction aims to uncover relations between entities by harnessing the intricate information spread throughout a document. Previous research involved constructing discrete syntactic matrices to capture syntactic relationships within documents. However, these methods are significantly influenced by dependency parsing errors, leaving much of the latent syntactic information untapped. Moreover, prior research has mainly focused on modeling two-hop reasoning between entity pairs, which has limited applicability in scenarios requiring multi-hop reasoning. To tackle these challenges, a syntax-enhanced multi-hop reasoning network (SEMHRN) is proposed. Specifically, the approach begins by using a dependency probability matrix that incorporates richer grammatical information instead of a sparse syntactic parsing matrix to build the syntactic graph. This effectively reduces syntactic parsing errors and enhances the model's robustness. To fully leverage dependency information, dependency-type-aware attention is introduced to refine edge weights based on connecting edge types. Additionally, a part-of-speech prediction task is included to regularize word embeddings. Unrelated entity pairs can disrupt the model's focus, reducing its efficiency. To concentrate the model's attention on related entity pairs, these related pairs are extracted, and a multi-hop reasoning graph attention network is employed to capture the multi-hop dependencies among them. Experimental results on three public document-level relation extraction datasets validate that SEMHRN achieves a competitive F1 score compared to the current state-of-the-art methods. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:9155 / 9171
页数:16
相关论文
共 50 条
  • [41] CDER: Collaborative Evidence Retrieval for Document-Level Relation Extraction
    Khai Phan Tran
    Li, Xue
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024, 2024, 14795 : 28 - 39
  • [42] Enhancing Document-Level Relation Extraction with Entity Pronoun Resolution and Relation Correlation
    Pi, Qiankun
    Lu, Jicang
    Sun, Yepeng
    Zhu, Taojie
    Xia, Yi
    Yang, Chenguang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT II, NLPCC 2024, 2025, 15360 : 174 - 186
  • [43] CRFLOE: Context Region Filter and Relation Word Aware for Document-Level Relation Extraction
    Yang, DanPing
    Li, XianXian
    Wu, Hao
    Zhou, Aoxiang
    Liu, Peng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 102 - 114
  • [44] Document-Level Relation Extraction with Additional Evidence and Entity Type Information
    Li, Jinliang
    Wang, Junlei
    Li, Canyu
    Liu, Xiaojing
    Feng, Zaiwen
    Qin, Li
    Mayer, Wolfgang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 226 - 237
  • [45] Biomedical document-level relation extraction with thematic capture and localized entity pooling
    Li, Yuqing
    Shao, Xinhui
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 160
  • [46] Mining heuristic evidence sentences for more interpretable document-level relation extraction
    Zhu, Taojie
    Lu, Jicang
    Zhou, Gang
    Ding, Xiaoyao
    Guo, Panpan
    Wu, Hao
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2023, 35 (07)
  • [47] Self-supervised commonsense knowledge learning for document-level relation extraction
    Li, Rongzhen
    Zhong, Jiang
    Xue, Zhongxuan
    Dai, Qizhu
    Li, Xue
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [48] Enhancing Document-Level Relation Extraction with Attention-Convolutional Hybrid Networks and Evidence Extraction
    Zhang, Feiyu
    Hu, Ruiming
    Duan, Guiduo
    Huang, Tianxi
    COGNITIVE COMPUTATION, 2024, : 1113 - 1124
  • [49] Document-Level Relation Extraction Based on Fine-Grained Information Guidance
    Pu, Chujun
    Zhang, Xuejie
    Wang, Jin
    Zhou, Xiaobing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14877 : 378 - 390
  • [50] NA-Aware Machine Reading Comprehension for Document-Level Relation Extraction
    Zhang, Zhenyu
    Yu, Bowen
    Shu, Xiaobo
    Liu, Tingwen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT III, 2021, 12977 : 580 - 595