Advancing document-level relation extraction with a syntax-enhanced multi-hop reasoning network

被引:0
|
作者
Zhong Y. [1 ]
Shen B. [1 ,2 ]
Wang T. [1 ]
机构
[1] School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing
[2] Key Laboratory of Communication and Information Systems, Beijing Municipal Commission of Education, Beijing
基金
中国国家自然科学基金;
关键词
Attention mechanism; document-level relation extraction; multi-hop reasoning; syntactic information;
D O I
10.3233/JIFS-237167
中图分类号
学科分类号
摘要
Document-level relation extraction aims to uncover relations between entities by harnessing the intricate information spread throughout a document. Previous research involved constructing discrete syntactic matrices to capture syntactic relationships within documents. However, these methods are significantly influenced by dependency parsing errors, leaving much of the latent syntactic information untapped. Moreover, prior research has mainly focused on modeling two-hop reasoning between entity pairs, which has limited applicability in scenarios requiring multi-hop reasoning. To tackle these challenges, a syntax-enhanced multi-hop reasoning network (SEMHRN) is proposed. Specifically, the approach begins by using a dependency probability matrix that incorporates richer grammatical information instead of a sparse syntactic parsing matrix to build the syntactic graph. This effectively reduces syntactic parsing errors and enhances the model's robustness. To fully leverage dependency information, dependency-type-aware attention is introduced to refine edge weights based on connecting edge types. Additionally, a part-of-speech prediction task is included to regularize word embeddings. Unrelated entity pairs can disrupt the model's focus, reducing its efficiency. To concentrate the model's attention on related entity pairs, these related pairs are extracted, and a multi-hop reasoning graph attention network is employed to capture the multi-hop dependencies among them. Experimental results on three public document-level relation extraction datasets validate that SEMHRN achieves a competitive F1 score compared to the current state-of-the-art methods. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:9155 / 9171
页数:16
相关论文
共 50 条
  • [21] Graph neural networks with selective attention and path reasoning for document-level relation extraction
    Hang, Tingting
    Feng, Jun
    Wang, Yunfeng
    Yan, Le
    APPLIED INTELLIGENCE, 2024, 54 (07) : 5353 - 5372
  • [22] DoreBer: Document-Level Relation Extraction Method Based on BernNet
    Yuan, Boya
    Xu, Liwen
    IEEE ACCESS, 2023, 11 : 136468 - 136477
  • [23] Enhanced Heterogeneous Graph Attention Network with a Novel Multilabel Focal Loss for Document-Level Relation Extraction
    Chen, Yang
    Shi, Bowen
    ENTROPY, 2024, 26 (03)
  • [24] Multi-relation Identification for Few-Shot Document-Level Relation Extraction
    Wang, Dazhuang
    Wu, Shaojuan
    Zhang, Xiaowang
    Feng, Zhiyong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IX, 2023, 14262 : 52 - 64
  • [25] Interaction and Fusion of Rich Textual Information Network for Document-level Relation Extraction
    Zhong, Yu
    Shen, Bo
    Wang, Tao
    Zhang, Jinglin
    Liu, Yun
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2024, 30 (08) : 1112 - 1136
  • [26] Exploiting Ubiquitous Mentions for Document-Level Relation Extraction
    Zhang, Ruoyu
    Li, Yanzeng
    Zhang, Minhao
    Zou, Lei
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1986 - 1990
  • [27] Evidence-aware Document-level Relation Extraction
    Xu, Tianyu
    Hua, Wen
    Qu, Jianfeng
    Li, Zhixu
    Xu, Jiajie
    Liu, An
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2311 - 2320
  • [28] Document-Level Relation Extraction With Context Guided Mention Integration and Inter-Pair Reasoning
    Zeng, Daojian
    Zhao, Chao
    Jiang, Chao
    Zhu, Jianling
    Dai, Jianhua
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 3659 - 3666
  • [29] A Document-Level Relation Extraction Framework with Dynamic Pruning
    Zhang, Hanyue
    Li, Li
    Shen, Jun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 13 - 25
  • [30] Collective prompt tuning with relation inference for document-level relation extraction
    Yuan, Changsen
    Cao, Yixin
    Huang, Heyan
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (05)