Numerical Simulation of Gas Self-Oscillations in Gas Turbine Combustors

被引:1
作者
Drobysh, M. V. [1 ]
Dubovitskii, A. N. [1 ]
Lebedev, A. B. [1 ]
Furletov, V. I. [1 ]
Yakubovskii, K. Ya. [1 ]
机构
[1] Baranov Cent Inst Aviat Motors, Moscow 111116, Russia
关键词
low-emission combustor; turbulent combustion calculation method; instability combustion; self-excitation of gas oscillations; self-oscillation modes; PREMIXED COMBUSTION;
D O I
10.1134/S0010508224020035
中图分类号
O414.1 [热力学];
学科分类号
摘要
An economical method for numerical simulation of self-excitation of gas oscillations in low-emission combustors of gas turbine plants is developed and tested. The method is based on using an SAS SST \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k{-}\omega$$\end{document} turbulence model and a turbulent combustion model with a modified equation for a variable degree of combustion completion. Simulating the self-excitation of gas oscillations requires that a factor associated with gas pressure oscillations is introduced into the source term of this equation. Isolation of one of the gas oscillation modes prone to self-excitation is carried out using a resonant filter operating in each cell of the computational domain. The computational results obtained using the proposed method make it possible to study the effect of design measures and operating parameters of self-oscillations and to approach the choice of measures to suppress them.
引用
收藏
页码:168 / 177
页数:10
相关论文
共 50 条
[41]   COMBUSTION TUNING FOR A GAS TURBINE POWER PLANT USING DATA-DRIVEN AND MACHINE LEARNING APPROACH [J].
Li, Suhui ;
Zhu, Huaxin ;
Zhu, Min ;
Zhao, Gang ;
Wei, Xiaofeng .
PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 6, 2020,
[42]   Effect of the air–fuel mixing on the NO х yield in a low-emission gas-turbine plant combustor [J].
Vasil’ev V.D. ;
Bulysova L.A. ;
Berne A.L. .
Thermal Engineering, 2016, 63 (04) :246-252
[43]   Pollution emission characteristics of hydrogen-fueled combustor of an aero-engine conversion gas turbine [J].
Ju H. ;
Liang H. ;
Suo J. ;
Sun F. .
Tuijin Jishu/Journal of Propulsion Technology, 2024, 45 (03)
[44]   Experiments on a Low-Emission Two-Stage Model Combustor for a Medium-Power Gas Turbine [J].
Bulysova L.A. ;
Vasil’ev V.D. ;
Gutnik M.N. ;
Pugach K.S. ;
Gutnik M.M. ;
Berne A.L. .
Power Technology and Engineering, 2020, 53 (06) :713-718
[45]   EFFECT OF FUEL REACTIVITY AND OPERATING CONDITIONS ON FLAME ANCHORING IN THE PREMIXING ZONE OF A SWIRL STABILIZED GAS TURBINE COMBUSTOR [J].
Tartsch, Simon ;
Flebbe, Saskia ;
Ponte, Germano J. Marques de Sousa ;
Sattelmayer, Thomas .
PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3A, 2023,
[46]   Results of Testing of the GTÉ-110 Gas-Turbine Low-Emission Combustor in Full Operating Conditions [J].
Bulysova L.A. ;
Vasil’ev V.D. ;
Berne A.L. ;
Gutnik M.M. ;
Gutnik M.N. ;
Pugach K.S. .
Power Technology and Engineering, 2016, 50 (04) :424-428
[47]   Low-Emission Operation of Aeroderivative Gas-Turbine Combustor over a Wide Range of Ambient Conditions [J].
Bulysova L.A. ;
Tumanovskii A.G. ;
Gutnik M.N. ;
Vasil’ev V.D. ;
Sipatov A.M. ;
Nugumanov A.D. .
Power Technology and Engineering, 2020, 54 (1) :93-95
[48]   Towards hydrogen gas turbine engines aviation: A review of production, infrastructure, storage, aircraft design and combustion technologies [J].
Boretti, Alberto .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 :279-288
[49]   Simulation of a premixed explosion of gas vented during Li-ion battery failure [J].
Henriksen, Mathias ;
Vaagsaether, Knut ;
Lundberg, Joachim ;
Forseth, Sissel ;
Bjerketvedt, Dag .
FIRE SAFETY JOURNAL, 2021, 126