An Intelligent Coexistence Strategy for eMBB/URLLC Traffic in Multi-UAV Relay Networks via Deep Reinforcement Learning

被引:0
|
作者
Tian, Mengqiu [1 ]
Li, Changle [1 ]
Hui, Yilong [1 ]
Chen, Binbin [2 ]
Yue, Wenwei [1 ]
Fu, Yuchuan [1 ]
Han, Zhu [3 ,4 ]
机构
[1] Xidian Univ, State Key Lab ISN, Xian 710071, Peoples R China
[2] Singapore Univ Technol & Design, Pillar Informat Syst Technol & Design, Singapore 487372, Singapore
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[4] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Ultra reliable low latency communication; Autonomous aerial vehicles; Fluctuations; Multiplexing; Resource management; Delays; Relay networks; UAV-relay networks; eMBB/URLLC multiplexing; personalized fluctuations; deep reinforcement learning; URLLC; EMBB; 5G;
D O I
10.1109/TWC.2024.3401163
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Preemptive scheduling efficiently addresses the coexistence of enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC). While URLLC puncturing influences eMBB performance, further investigation is necessary to study the trade-offs between stability, delay, and efficiency. However, existing studies overlook the imbalance in eMBB/URLLC load distribution and personalized fluctuations in eMBB performance, leading to sub-optimal results. To tackle this, we propose an unmanned aerial vehicle (UAV) relay-assisted eMBB/URLLC multiplexing framework. Specifically, considering the utilization of UAVs for connecting separated next-generation Node Bs (gNBs) and the individual subject experience of services, we first formulate the multiplexing problem as an optimization problem. The objective is to maximize eMBB throughput and minimize personalized fluctuations in eMBB performance and UAV consumption, subject to URLLC constraints. Then, the challenging problem is decomposed into the eMBB problem and the URLLC problem. For the former, we further decompose it into three sub-problems and solve them using optimization methods. For the latter, we propose a deep reinforcement learning-based algorithm to obtain an optimal strategy for relaying and puncturing URLLC into eMBB intelligently. Simulation results demonstrate that our proposals outperform benchmark schemes regarding eMBB throughput, UAV consumption, eMBB performance fluctuation, URLLC satisfaction, and learning efficiency.
引用
收藏
页码:13424 / 13439
页数:16
相关论文
共 50 条
  • [41] Multi-UAV Path Planning for Wireless Data Harvesting With Deep Reinforcement Learning
    Bayerlein, Harald
    Theile, Mirco
    Caccamo, Marco
    Gesbert, David
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 1171 - 1187
  • [42] Multi-UAV Trajectory Design and Power Control Based on Deep Reinforcement Learning
    Zhang C.Y.
    Liang S.Y.
    He C.L.
    Wang K.Z.
    Journal of Communications and Information Networks, 2022, 7 (02): : 192 - 201
  • [43] Constrained Deep Reinforcement Learning for Energy Sustainable Multi-UAV Based Random Access IoT Networks With NOMA
    Khairy, Sami
    Balaprakash, Prasanna
    Cai, Lin X.
    Cheng, Yu
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (04) : 1101 - 1115
  • [44] Throughput Maximization in NOMA Enhanced RIS-Assisted Multi-UAV Networks: A Deep Reinforcement Learning Approach
    Tang, Runzhi
    Wang, Junxuan
    Zhang, Yanyan
    Jiang, Fan
    Zhang, Xuewei
    Du, Jianbo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 730 - 745
  • [45] Age-of-Information based Multi-UAV Trajectories Using Deep Reinforcement Learning
    Kaur, Amanjot
    Jha, Shashi Shekhar
    IETE TECHNICAL REVIEW, 2024, 41 (06) : 659 - 671
  • [46] Integrating human experience in deep reinforcement learning for multi-UAV collision detection and avoidance
    Wang, Guanzheng
    Xu, Yinbo
    Liu, Zhihong
    Xu, Xin
    Wang, Xiangke
    Yan, Jiarun
    Industrial Robot, 2022, 49 (02): : 256 - 270
  • [47] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE ACCESS, 2020, 8 : 9124 - 9132
  • [48] Scalable and Cooperative Deep Reinforcement Learning Approaches for Multi-UAV Systems: A Systematic Review
    Frattolillo, Francesco
    Brunori, Damiano
    Iocchi, Luca
    DRONES, 2023, 7 (04)
  • [49] Integrating human experience in deep reinforcement learning for multi-UAV collision detection and avoidance
    Wang, Guanzheng
    Xu, Yinbo
    Liu, Zhihong
    Xu, Xin
    Wang, Xiangke
    Yan, Jiarun
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2022, 49 (02): : 256 - 270
  • [50] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE Access, 2020, 8 : 9124 - 9132