An Intelligent Coexistence Strategy for eMBB/URLLC Traffic in Multi-UAV Relay Networks via Deep Reinforcement Learning

被引:0
|
作者
Tian, Mengqiu [1 ]
Li, Changle [1 ]
Hui, Yilong [1 ]
Chen, Binbin [2 ]
Yue, Wenwei [1 ]
Fu, Yuchuan [1 ]
Han, Zhu [3 ,4 ]
机构
[1] Xidian Univ, State Key Lab ISN, Xian 710071, Peoples R China
[2] Singapore Univ Technol & Design, Pillar Informat Syst Technol & Design, Singapore 487372, Singapore
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[4] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Ultra reliable low latency communication; Autonomous aerial vehicles; Fluctuations; Multiplexing; Resource management; Delays; Relay networks; UAV-relay networks; eMBB/URLLC multiplexing; personalized fluctuations; deep reinforcement learning; URLLC; EMBB; 5G;
D O I
10.1109/TWC.2024.3401163
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Preemptive scheduling efficiently addresses the coexistence of enhanced Mobile Broad Band (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC). While URLLC puncturing influences eMBB performance, further investigation is necessary to study the trade-offs between stability, delay, and efficiency. However, existing studies overlook the imbalance in eMBB/URLLC load distribution and personalized fluctuations in eMBB performance, leading to sub-optimal results. To tackle this, we propose an unmanned aerial vehicle (UAV) relay-assisted eMBB/URLLC multiplexing framework. Specifically, considering the utilization of UAVs for connecting separated next-generation Node Bs (gNBs) and the individual subject experience of services, we first formulate the multiplexing problem as an optimization problem. The objective is to maximize eMBB throughput and minimize personalized fluctuations in eMBB performance and UAV consumption, subject to URLLC constraints. Then, the challenging problem is decomposed into the eMBB problem and the URLLC problem. For the former, we further decompose it into three sub-problems and solve them using optimization methods. For the latter, we propose a deep reinforcement learning-based algorithm to obtain an optimal strategy for relaying and puncturing URLLC into eMBB intelligently. Simulation results demonstrate that our proposals outperform benchmark schemes regarding eMBB throughput, UAV consumption, eMBB performance fluctuation, URLLC satisfaction, and learning efficiency.
引用
收藏
页码:13424 / 13439
页数:16
相关论文
共 50 条
  • [31] Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks
    Fu, Hang
    Wang, Jingjing
    Chen, Jianrui
    Ren, Pengfei
    Zhang, Zheng
    Zhao, Guodong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21274 - 21286
  • [32] Joint Task Offloading and Resource Allocation in Multi-UAV Multi-Server Systems: An Attention-Based Deep Reinforcement Learning Approach
    Wu, Guohua
    Liu, Zelin
    Fan, Mingfeng
    Wu, Keyu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11964 - 11978
  • [33] 5G Multi-RAT URLLC and eMBB Dynamic Task Offloading With MEC Resource Allocation Using Distributed Deep Reinforcement Learning
    Yun, Jusik
    Goh, Yunyeong
    Yoo, Wonsuk
    Chung, Jong-Moon
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20733 - 20749
  • [34] Deep reinforcement learning based trajectory design and resource allocation for task-aware multi-UAV enabled MEC networks
    Li, Zewu
    Xu, Chen
    Zhang, Zhanpeng
    Wu, Runze
    COMPUTER COMMUNICATIONS, 2024, 213 : 88 - 98
  • [35] Multi-Agent Deep Reinforcement Learning for Joint Decoupled User Association and Trajectory Design in Full-Duplex Multi-UAV Networks
    Dai, Chen
    Zhu, Kun
    Hossain, Ekram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (10) : 6056 - 6070
  • [36] Deep Reinforcement Learning Based Resource Allocation in Multi-UAV-Aided MEC Networks
    Chen, Jingxuan
    Cao, Xianbin
    Yang, Peng
    Xiao, Meng
    Ren, Siqiao
    Zhao, Zhongliang
    Wu, Dapeng Oliver
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (01) : 296 - 309
  • [37] UAV-Enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning
    Liu, Saichao
    Sun, Geng
    Li, Jiahui
    Liang, Shuang
    Wu, Qingqing
    Wang, Pengfei
    Niyato, Dusit
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 13015 - 13032
  • [38] Deep Reinforcement Learning Based Computation Offloading and Trajectory Planning for Multi-UAV Cooperative Target Search
    Luo, Quyuan
    Luan, Tom H.
    Shi, Weisong
    Fan, Pingzhi
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (02) : 504 - 520
  • [39] Cooperative Multi-UAV Positioning for Aerial Internet Service Management: A Multi-Agent Deep Reinforcement Learning Approach
    Kim, Joongheon
    Park, Soohyun
    Jung, Soyi
    Cordeiro, Carlos
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 3797 - 3812
  • [40] UAV-Assisted Heterogeneous Multi-Server Computation Offloading With Enhanced Deep Reinforcement Learning in Vehicular Networks
    Song, Xiaoqin
    Zhang, Wenjing
    Lei, Lei
    Zhang, Xinting
    Zhang, Lijuan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5323 - 5335