Predicting variable-length ACE inhibitory peptides based on graph convolutional network

被引:1
|
作者
Rong, Yating [1 ,2 ]
Feng, Baolong [3 ]
Cai, Xiaoshuang [2 ]
Song, Hongjie [2 ]
Wang, Lili [2 ]
Wang, Yehui [2 ]
Yan, Xinxu [2 ]
Sun, Yulin [2 ]
Zhao, Jinyong [1 ]
Li, Ping [1 ]
Yang, Huihui [1 ]
Wang, Yutang [1 ,4 ]
Wang, Fengzhong [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Food Sci & Technol, Key Lab Agroprod Proc, Minist Agr, Beijing 100193, Peoples R China
[2] Northeast Agr Univ, Food Coll, Harbin 150030, Peoples R China
[3] Northeast Agr Univ, Ctr Educ Technol, Harbin 150030, Peoples R China
[4] Chinese Acad Agr Sci, Western Agr Res Ctr, Changji 831100, Peoples R China
关键词
ACE inhibitory peptides; Variable-length; Molecular graphs; Graph convolutional network; I-CONVERTING-ENZYME; ANTIHYPERTENSIVE PEPTIDES; STRUCTURAL REQUIREMENTS; MOLECULAR DOCKING; PURIFICATION; MILK; IDENTIFICATION; HYDROLYSATE; DIPEPTIDES; MODEL;
D O I
10.1016/j.ijbiomac.2024.137060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Traditional molecular descriptors have contributed to the prediction of angiotensin I-converting enzyme (ACE) inhibitory peptides, but they often fall short in capturing the complex structure of the molecule. To address these limitations, this study introduces molecular graphs as an advanced method for peptide characterization. Peptides containing 2-10 amino acids were represented using molecular graphs, and a graph convolutional network (GCN) model was constructed to predict variable-length peptides. This model was compared with machine learning (ML) models based on molecular descriptors, including Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbor (kNN), under the same benchmark. Notably, the GCN model outperformed the other models with an accuracy of 0.78, effectively identifying ACE inhibitory potential. Furthermore, the GCN model also demonstrated superior performance, exceeding existing methods with an accuracy rate of over 98 % on an independent test set. To validate our predictions, we synthesized peptides VAPE and AQQKEP with high predicted probabilities, and their IC50 values of 2.25 +/- 0.11 and 3.75 +/- 0.17 mu M, respectively, indicating potent ACE inhibitory activity. The developed GCN model presents a powerful tool for the rapid screening and identification of ACE inhibitory peptides, offering promising opportunities for developing antihypertensive components in functional foods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Ethereum Account Classification Based on Graph Convolutional Network
    Huang, Tao
    Lin, Dan
    Wu, Jiajing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2528 - 2532
  • [32] Intelligent malware detection based on graph convolutional network
    Li, Shanxi
    Zhou, Qingguo
    Zhou, Rui
    Lv, Qingquan
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (03) : 4182 - 4198
  • [33] Polyphonic piano transcription based on graph convolutional network
    Xiao, Zhe
    Chen, Xin
    Zhou, Li
    SIGNAL PROCESSING, 2023, 212
  • [34] Graph Convolutional Network Based on Manifold Similarity Learning
    Chen, Si-Bao
    Tian, Xiu-Zhi
    Ding, Chris H. Q.
    Luo, Bin
    Liu, Yi
    Huang, Hao
    Li, Qiang
    COGNITIVE COMPUTATION, 2020, 12 (06) : 1144 - 1153
  • [35] Identification of perceptive users based on the graph convolutional network
    Guo, Qiang
    Luo, Yong
    Ou, Yang
    Liu, Jian-Guo
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [36] Graph Convolutional Network based Link State Prediction
    Yeom, Sungwoong
    Choi, Chulwoong
    Kolekar, Shivani Sanjay
    Kim, Kyungbaek
    2021 22ND ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS), 2021, : 246 - 249
  • [37] Intelligent malware detection based on graph convolutional network
    Shanxi Li
    Qingguo Zhou
    Rui Zhou
    Qingquan Lv
    The Journal of Supercomputing, 2022, 78 : 4182 - 4198
  • [38] A Convolutional Neural Network and Graph Convolutional Network Based Framework for Classification of Breast Histopathological Images
    Gao, Zhiyang
    Lu, Zhiyang
    Wang, Jun
    Ying, Shihui
    Shi, Jun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (07) : 3163 - 3173
  • [39] PREDICTING PERFORMANCE OUTCOME WITH A CONVERSATIONAL GRAPH CONVOLUTIONAL NETWORK FOR SMALL GROUP INTERACTIONS
    Lin, Yun-Shao
    Lee, Chi-Chun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8044 - 8048
  • [40] Game Recommendation Based on Dynamic Graph Convolutional Network
    Ye, Wenwen
    Qin, Zheng
    Ding, Zhuoye
    Yin, Dawei
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 335 - 351