Research on lightweight pavement disease detection model based on YOLOv7

被引:0
作者
Wang C. [1 ,2 ]
Li J. [1 ]
Wang J. [2 ]
Zhao W. [1 ]
机构
[1] School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan
[2] Jinling Institute of Technology, Nanjing
关键词
BRA; F-ReLU; lightweight; MobilieNetV3; Wise-IoU; Yolov7;
D O I
10.3233/JIFS-239289
中图分类号
U41 [道路工程]; TU997 [];
学科分类号
0814 ;
摘要
Rapid urbanization has made road construction and maintenance imperative, but detecting road diseases has been time-consuming with limited accuracy. To overcome these challenges, we propose an efficient YOLOv7 road disease detection model. Our approach involves integrating MobilieNetV3 as the backbone feature extraction network to reduce the network's parameters and computational requirements. Additionally, we introduce the BRA attention module into the spatial pyramid pooling module to eliminate redundant information and enhance the network's feature representation capability. Moreover, we utilize the F-ReLU activation function in the backbone network, expanding the convolutional layers' receptive field range. To optimize the model's boundary loss, we employ the Wise-IoU loss function, which places more emphasis on the quality of ordinary samples and enhances the overall performance and generalization ability of the network. Experimental results demonstrate that our improved detection algorithm achieves a higher recall rate and mean average precision (mAP) on the public dataset (RDD) and the NJdata dataset in Nanjing's urban area. Specifically, compared to YOLOv7, our model increases the recall rate and mAP on RDD by 3.3% and 2.6%, respectively. On the NJdata dataset, our model improves the recall rate and mAP by 1.9% and 1.3%, respectively. Furthermore, our model reduces parameter and computational requirements by 30% and 22.5%, respectively, striking a balance between detection accuracy and speed. In conclusion, our road disease detection model presents an effective solution to address the challenges associated with road disease detection in urban areas. It offers improved accuracy, efficiency, and generalization capabilities compared to existing models. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:10573 / 10589
页数:16
相关论文
共 50 条
  • [1] A marigold corolla detection model based on the improved YOLOv7 lightweight
    Fan, Yixuan
    Tohti, Gulbahar
    Geni, Mamtimin
    Zhang, Guohui
    Yang, Jiayu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4703 - 4712
  • [2] Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7
    Zhao, Kai
    Zhao, Lulu
    Zhao, Yanan
    Deng, Hanbing
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [3] A lightweight road crack detection algorithm based on improved YOLOv7 model
    He, Junjie
    Wang, Yanchao
    Wang, Yiting
    Li, Run
    Zhang, Dawei
    Zheng, Zhonglong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 847 - 860
  • [4] Rapid detection of Yunnan Xiaomila based on lightweight YOLOv7 algorithm
    Wang, Fenghua
    Jiang, Jin
    Chen, Yu
    Sun, Zhexing
    Tang, Yuan
    Lai, Qinghui
    Zhu, Hailong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [5] A lightweight multi-target ship tracking model based on Yolov7
    Cen, Jian
    Chen, Jia-Hao
    Liu, Xi
    Li, Jia-Xi
    Li, Hai-Sheng
    Huang, Wei-Sheng
    Kang, Jun-Xi
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [6] A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard
    Chen, Junyang
    Liu, Hui
    Zhang, Yating
    Zhang, Daike
    Ouyang, Hongkun
    Chen, Xiaoyan
    PLANTS-BASEL, 2022, 11 (23):
  • [7] MGDE-YOLO: An Improved Lightweight Algorithm for Personnel Departure Detection Based on YOLOv7
    Xu, Haiqiang
    Xue, Renzheng
    Zhang, Zifeng
    Hua, Shijie
    IEEE ACCESS, 2024, 12 : 150592 - 150603
  • [8] Las-yolo: a lightweight detection method based on YOLOv7 for small objects in airport surveillance
    Zhou, Wentao
    Cai, Chengtao
    Wu, Kejun
    Li, Chenming
    Gao, Biqin
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (15) : 21764 - 21789
  • [9] QL-YOLOv8s: Precisely Optimized Lightweight YOLOv8 Pavement Disease Detection Model
    Guo, Jinbo
    Wang, Shenghuai
    Chen, Xiaohui
    Wang, Chen
    Zhang, Wei
    IEEE ACCESS, 2024, 12 : 128392 - 128403
  • [10] Pedestrian Fall Detection Algorithm Based on Improved YOLOv7
    Wang, Fei
    Zhang, Yunchu
    Zhang, Xinyi
    Liu, Yiming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT I, 2025, 2181 : 437 - 448