Parameter estimation for the complex fractional Ornstein-Uhlenbeck processes with Hurst parameter H ∈ (0,1/2)

被引:0
|
作者
Alazemi, Fares [1 ]
Alsenafi, Abdulaziz [1 ]
Chen, Yong [2 ]
Zhou, Hongjuan [3 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[2] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
关键词
Complex Wiener-It & ocirc; multiple integral; Fractional Brownian motion; Fractional Ornstein-Uhlenbeck process; Least squares estimate; Fourth moment theorem; alpha-fractional Brownian bridge; alpha-order fractional Brownian motion;
D O I
10.1016/j.chaos.2024.115556
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the strong consistency and asymptotic normality of a least squares estimator of the drift coefficient in complex-valued Ornstein-Uhlenbeck processes driven by fractional Brownian motion, extending the results of Chen et al. (2017) to the case of Hurst parameter H is an element of (1/4,1/2) and the results of Hu et al. (2019) to a two-dimensional case. When H is an element of (0,1/4], it is found that the integrand of the estimator is not in the domain of the standard divergence operator. To facilitate the proofs, we develop a new inner product formula for functions of bounded variation in the reproducing kernel Hilbert space of fractional Brownian motion with Hurst parameter H is an element of (0,1/2). This formula is also applied to obtain the second moments of the so-called alpha-order fractional Brownian motion and the alpha-fractional bridges with the Hurst parameter H is an element of (0,1/2).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter H ∈ (0,1/2)
    Chen, Yong
    Li, Ying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (13) : 2996 - 3013
  • [2] Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter
    Hu, Yaozhong
    Nualart, David
    Zhou, Hongjuan
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2019, 22 (01) : 111 - 142
  • [3] Moderate Deviations for the Parameter Estimation in the Fractional Ornstein-Uhlenbeck Process with H ∈ (0,1/2)
    Jiang, Hui
    Yang, Qing-shan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024,
  • [4] Consistency of the drift parameter estimator for the discretized fractional Ornstein-Uhlenbeck process with Hurst index H ∈ (0,1/2)
    Kubilius, Kestutis
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Seleznjev, Oleg
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1799 - 1825
  • [5] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [6] Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise
    Chen, Yong
    Hu, Yaozhong
    Wang, Zhi
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 613 - 629
  • [7] Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter
    Yaozhong Hu
    David Nualart
    Hongjuan Zhou
    Statistical Inference for Stochastic Processes, 2019, 22 : 111 - 142
  • [8] Parameter Estimation for Complex Ornstein-Uhlenbeck Processes
    潘玉荣
    孙西超
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 399 - 404
  • [9] On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes
    Lee, Chihoon
    Song, Jian
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (05) : 751 - 778
  • [10] Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation
    Xiao, Weilin
    Zhang, Weiguo
    Xu, Weidong
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4196 - 4207