Composite Separators with Very High Garnet Content for Solid-State Batteries

被引:0
|
作者
Vattappara, Kevin [1 ,3 ,4 ,5 ]
Finsterbusch, Martin [2 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,4 ,5 ]
Kvasha, Andriy [1 ,3 ]
机构
[1] Basque Res & Technol Alliance BRTA, P Miramon 196, Donostia San Sebastian 20014, Spain
[2] Forschungszentrum Julich, Inst Energy Mat & Devices IMD Mat Synth & Proc 2, Wilhelm Johnen Str, D-52428 Julich, Germany
[3] ALISTORE European Res Inst, Hub Energie, FR CNRS 3104, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Univ Duisburg Essen, Fac Engn Sci, Inst Nanostruct & Technol, Lotharstr 1, D-47057 Duisburg, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
来源
CHEMELECTROCHEM | 2024年 / 11卷 / 21期
关键词
Solid composite electrolyte; ceramic-rich composite separator; lithium metal battery; solid state batteries; IONIC-CONDUCTIVITY; TETRAGONAL LI7LA3ZR2O12; POLYMER ELECTROLYTES; DENDRITE FORMATION; LITHIUM BATTERIES; MOLECULAR-WEIGHT; PERFORMANCE;
D O I
10.1002/celc.202400323
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-metal solid-state batteries are attractive as next generation of Li-ion batteries due to higher safety and potentially higher energy density. To improve processability, solid-composite separators combine advantages of inorganic and polymer separators in hybrid structure. We report a systematic approach to fabricate composite separators with high content (90-95 wt %) of ceramic Li-ion conducting Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) powder embedded in a polyethylene oxide (PEO)-LiTFSI (20 : 1) matrix and understand factors affecting their properties and performance. Separators with good mechanical flexibility and excellent thermal stability were obtained, by optimizing materials and processing parameters. It was found that PEO molecular weight strongly influences the microstructure and electrochemical properties of the separators. In optimized separator with 90 wt % of LLZO and PEO with Mw 300,000 g/mol, a total ionic conductivity of 1.4x10-5 S/cm at 60 degrees C was achieved. The ceramic-rich separator showed excellent long-term cycling stability for more than 460 cycles (1000 h) at 0.1 mA/cm2 in Li/Li symmetrical cells and achieved a critical current density of 0.25 mA/cm2. The separators also enabled initial discharge capacities of more than 160 mAh/g in full cells with Li metal anode and composite solid-state LiNi0.6Co0.2Mn0.2O2 cathode, although rapid capacity fade was observed after 10 cycles in fully solid-state configuration. Flexible composite electrolyte separators with a very high garnet content are produced by combining electrochemically stable ceramic powder with a PEO-LiTFSI matrix in a simple process that does not require sintering. The composite separators enable stable operation with lithium metal anodes. image
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Interfacial engineering for high-performance garnet-based solid-state lithium batteries
    Wang, Lingchen
    Wu, Jiaxin
    Bao, Chengshuai
    You, Zichang
    Lu, Yan
    Wen, Zhaoyin
    SUSMAT, 2024, 4 (01): : 72 - 105
  • [22] Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries
    Wang, Chengwei
    Fu, Kun
    Kammampata, Sanoop Palakkathodi
    Mcowen, Dennis W.
    Samson, Alfred Junio
    Zhang, Lei
    Hitz, Gregory T.
    Nolan, Adelaide M.
    Wachsman, Eric D.
    Mo, Yifei
    Thangadurai, Venkataraman
    Hu, Liangbing
    CHEMICAL REVIEWS, 2020, 120 (10) : 4257 - 4300
  • [23] Garnet solid-state electrolyte with benzenedithiolate catholyte for rechargeable lithium batteries
    Wang, Bo
    Jin, Yang
    Si, Yubing
    Guo, Wei
    Fu, Yongzhu
    CHEMICAL COMMUNICATIONS, 2022, 58 (22) : 3657 - 3660
  • [24] Opportunities and Challenges of Calendering Sulfide-Based Separators for Solid-State Batteries
    Heck, Carina Amata
    Scharmann, Timon
    Osenberg, Markus
    Diener, Alexander
    Manke, Ingo
    Michalowski, Peter
    Kwade, Arno
    BATTERIES & SUPERCAPS, 2024, 7 (04)
  • [25] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [26] A bifunctional composite artificial solid electrolyte interphase for high stable solid-state lithium batteries
    Li, Rui
    Li, Jie
    Li, Lin-xin
    Yang, Hua
    Zhang, Gang
    Xiang, Jun
    Shen, Xiang-qian
    Jing, Mao-xiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 657
  • [27] Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook
    Wang, Senhao
    La Monaca, Andrea
    Demopoulos, George P.
    ENERGY ADVANCES, 2025, 4 (01):
  • [28] Unveiling Surface Chemistry of Ultrafast-Sintered LLZO Solid-State Electrolytes for High-Performance Li-Garnet Solid-State Batteries
    Zhang, Huanyu
    Klimpel, Matthias
    Wieczerzak, Krzysztof
    Dubey, Romain
    Okur, Faruk
    Michler, Johann
    Jeurgens, Lars P. H.
    Chernyshov, Dmitry
    van Beek, Wouter
    Kravchyk, Kostiantyn V.
    Kovalenko, Maksym V.
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11254 - 11263
  • [29] Ionic Liquid and Polymer Coated Garnet Solid Electrolytes for High-Energy Solid-State Lithium Metal Batteries
    Liu, Zhen
    Borodin, Andriy
    Endres, Frank
    ENERGY TECHNOLOGY, 2022, 10 (02)
  • [30] The state of solid-state batteries
    Jones, Kevin S.
    Rudawski, Nicholas G.
    Oladeji, Isaiah
    Pitts, Roland
    Fox, Richard
    AMERICAN CERAMIC SOCIETY BULLETIN, 2012, 91 (02): : 26 - 31