Composite Separators with Very High Garnet Content for Solid-State Batteries

被引:0
|
作者
Vattappara, Kevin [1 ,3 ,4 ,5 ]
Finsterbusch, Martin [2 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,4 ,5 ]
Kvasha, Andriy [1 ,3 ]
机构
[1] Basque Res & Technol Alliance BRTA, P Miramon 196, Donostia San Sebastian 20014, Spain
[2] Forschungszentrum Julich, Inst Energy Mat & Devices IMD Mat Synth & Proc 2, Wilhelm Johnen Str, D-52428 Julich, Germany
[3] ALISTORE European Res Inst, Hub Energie, FR CNRS 3104, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Univ Duisburg Essen, Fac Engn Sci, Inst Nanostruct & Technol, Lotharstr 1, D-47057 Duisburg, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
来源
CHEMELECTROCHEM | 2024年 / 11卷 / 21期
关键词
Solid composite electrolyte; ceramic-rich composite separator; lithium metal battery; solid state batteries; IONIC-CONDUCTIVITY; TETRAGONAL LI7LA3ZR2O12; POLYMER ELECTROLYTES; DENDRITE FORMATION; LITHIUM BATTERIES; MOLECULAR-WEIGHT; PERFORMANCE;
D O I
10.1002/celc.202400323
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-metal solid-state batteries are attractive as next generation of Li-ion batteries due to higher safety and potentially higher energy density. To improve processability, solid-composite separators combine advantages of inorganic and polymer separators in hybrid structure. We report a systematic approach to fabricate composite separators with high content (90-95 wt %) of ceramic Li-ion conducting Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) powder embedded in a polyethylene oxide (PEO)-LiTFSI (20 : 1) matrix and understand factors affecting their properties and performance. Separators with good mechanical flexibility and excellent thermal stability were obtained, by optimizing materials and processing parameters. It was found that PEO molecular weight strongly influences the microstructure and electrochemical properties of the separators. In optimized separator with 90 wt % of LLZO and PEO with Mw 300,000 g/mol, a total ionic conductivity of 1.4x10-5 S/cm at 60 degrees C was achieved. The ceramic-rich separator showed excellent long-term cycling stability for more than 460 cycles (1000 h) at 0.1 mA/cm2 in Li/Li symmetrical cells and achieved a critical current density of 0.25 mA/cm2. The separators also enabled initial discharge capacities of more than 160 mAh/g in full cells with Li metal anode and composite solid-state LiNi0.6Co0.2Mn0.2O2 cathode, although rapid capacity fade was observed after 10 cycles in fully solid-state configuration. Flexible composite electrolyte separators with a very high garnet content are produced by combining electrochemically stable ceramic powder with a PEO-LiTFSI matrix in a simple process that does not require sintering. The composite separators enable stable operation with lithium metal anodes. image
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
    Vattappara, Kevin
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    Urdampilleta, Idoia
    Kvasha, Andriy
    BATTERIES-BASEL, 2025, 11 (02):
  • [2] The Riddle of Dark LLZO: Cobalt Diffusion in Garnet Separators of Solid-State Lithium Batteries
    Scheld, Walter Sebastian
    Kim, Kwangnam
    Schwab, Christian
    Moy, Alexandra C.
    Jiang, Shi-Kai
    Mann, Markus
    Dellen, Christian
    Sohn, Yoo Jung
    Lobe, Sandra
    Ihrig, Martin
    Danner, Michael Gregory
    Chang, Chia-Yu
    Uhlenbruck, Sven
    Wachsman, Eric D.
    Hwang, Bing Joe
    Sakamoto, Jeff
    Wan, Liwen F.
    Wood, Brandon C.
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
  • [3] Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries
    Ye, Ruijie
    Tsai, Chih-Long
    Ihrig, Martin
    Sevinc, Serkan
    Rosen, Melanie
    Dashjav, Enkhtsetseg
    Sohn, Yoo Jung
    Figgemeier, Egbert
    Finsterbusch, Martin
    GREEN CHEMISTRY, 2020, 22 (15) : 4952 - 4961
  • [4] Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries
    Rajamani, Arunkumar
    Panneerselvam, Thamayanthi
    Abraham, Sona Elsin
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14): : 3185 - 3212
  • [5] Optimization for polyethylene glycol/garnet oxide composite electrolyte membrane for solid-state batteries
    Tian, Guiying
    Li, Huan
    Khalid, Bilal
    Zhao, Zijian
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [6] A Composite Solid-state Polymer Electrolyte for Solid-state Sodium Batteries
    Zhang Q.
    Su X.
    Lu Y.
    Hu Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2020, 48 (07): : 939 - 946
  • [7] Thin Solid Electrolyte Separators for Solid-State Lithium-Sulfur Batteries
    Kim, Soochan
    Chart, Yvonne A.
    Narayanan, Sudarshan
    Pasta, Mauro
    NANO LETTERS, 2022, 22 (24) : 10176 - 10183
  • [8] Fabrication of garnet solid electrolytes via sputtering for solid-state batteries
    Tsai, Shu-Yi
    Fung, Kuan-Zong
    SOLID-STATE ELECTRONICS, 2024, 215
  • [9] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    ENERGY STORAGE MATERIALS, 2024, 65
  • [10] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    Energy Storage Materials, 2024, 65