Access to an ELM-suppressed X-point radiator regime in TCV snowflake minus configurations

被引:2
作者
Reimerdes, H. [1 ]
Theiler, C. [1 ]
Bernert, M. [2 ]
Duval, B. P. [1 ]
Gorno, S. [1 ]
Hamm, D. [1 ]
Lee, K. [1 ]
Pan, O. [2 ]
Perek, A. [1 ]
Simons, L. [1 ]
Sun, G. [1 ]
Thornton, A. [3 ]
Verhaegh, K. [3 ]
Wang, Y. [1 ]
Zurita, M. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, Lausanne, Switzerland
[2] Max Planck Inst Plasma Phys, Garching, Germany
[3] UKAEA, Culham Sci Ctr, Abingdon, England
基金
瑞士国家科学基金会;
关键词
TCV's operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties; as predicted for plasmas where radiative losses are dominated by carbon impurities; that are ubiquitous in TCV. Guided by this theoretical model of the XPR; recent experiments employed TCV's configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration; which has a snowflake-minus topology; features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point; i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs); while retaining H-mode confinement; a behaviour only; to date; observed in devices with metallic walls. In contrast to observations in these other devices; on TCV; the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike. © 2024 The Authors;
D O I
10.1016/j.nme.2024.101784
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
TCV's operating regime with an X-point radiator (XPR) has been broadened by changing the magnetic geometry. XPRs have properties that could make them an attractive power exhaust solution for fusion reactors. These include the conversion of a high fraction of exhaust power into radiation. TCV had previously accessed the XPR regime only with difficulties, as predicted for plasmas where radiative losses are dominated by carbon impurities, that are ubiquitous in TCV. Guided by this theoretical model of the XPR, recent experiments employed TCV's configurational versatility to demonstrate that XPR access can be facilitated by introducing a second X-point in the vicinity of the separatrix. This configuration, which has a snowflake-minus topology, features a particularly long magnetic connection length from the region just above the X-point to the outer midplane together with a wide geometrical interface with the private flux region that reaches high neutral pressures. Transitioning to this configuration in a high-power H-mode leads to a shift in the radiating region across the separatrix from the divertor to a volume above the X-point, i.e. within the last closed flux surface (LCFS). This displacement of the radiating region is co-incident with the disappearance of edge localised modes (ELMs), while retaining H-mode confinement, a behaviour only, to date, observed in devices with metallic walls. In contrast to observations in these other devices, on TCV, the primary strike points in these configurations remain attached. Detailed measurements of the plasma kinetic parameters inside and outside of the separatrix now challenge the models for access and stability of the XPR and ELMs alike.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] The X-Point radiating regime at ASDEX Upgrade and TCV
    Bernert, M.
    Wiesen, S.
    Fevrier, O.
    Kallenbach, A.
    Koenders, J. T. W.
    Sieglin, B.
    Stroth, U.
    Bosman, T. O. S. J.
    Brida, D.
    Cavedon, M.
    David, P.
    Dunne, M. G.
    Henderson, S.
    Kool, B.
    Lunt, T.
    McDermott, R. M.
    Pan, O.
    Perek, A.
    Reimerdes, H.
    Sheikh, U.
    Theiler, C.
    van Berkel, M.
    Wijkamp, T.
    Wischmeier, M.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2023, 34
  • [2] X-point radiation, its control and an ELM suppressed radiating regime at the ASDEX Upgrade tokamak
    Bernert, M.
    Janky, F.
    Sieglin, B.
    Kallenbach, A.
    Lipschultz, B.
    Reimold, F.
    Wischmeier, M.
    Cavedon, M.
    David, P.
    Dunne, M. G.
    Griener, M.
    Kudlacek, O.
    McDermott, R. M.
    Treutterer, W.
    Wolfrum, E.
    Brida, D.
    Fevrier, O.
    Henderson, S.
    Komm, M.
    [J]. NUCLEAR FUSION, 2021, 61 (02)
  • [3] Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET
    Bernert, M.
    Wischmeier, M.
    Huber, A.
    Reimold, F.
    Lipschultz, B.
    Lowry, C.
    Brezinsek, S.
    Dux, R.
    Eich, T.
    Kallenbach, A.
    Lebschy, A.
    Maggi, C.
    McDermott, R.
    Puetterich, T.
    Wiesen, S.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 111 - 118
  • [4] Bernert M., 2024, NUCL MAT ENERG UNPUB
  • [5] Langmuir probe electronics upgrade on the tokamak a configuration variable
    De Oliveira, H.
    Marmillod, P.
    Theiler, C.
    Chavan, R.
    Fevrier, O.
    Labit, B.
    Lavanchy, P.
    Marletaz, B.
    Pitts, R. A.
    Coda, S.
    Ahn, J.
    Albanese, R.
    Alberti, S.
    Alessi, E.
    Allan, S.
    Anand, H.
    Anastassiou, G.
    Andrebe, Y.
    Angioni, C.
    Ariola, M.
    Bernert, M.
    Beurskens, M.
    Bin, W.
    Blanchard, P.
    Blanken, T. C.
    Boedo, J. A.
    Bolzonella, T.
    Bouquey, F.
    Braunmueller, F. H.
    Bufferand, H.
    Buratti, P.
    Calabro, G.
    Camenen, Y.
    Carnevale, D.
    Carpanese, F.
    Causa, F.
    Cesario, R.
    Chapman, I. T.
    Chellai, O.
    Choi, D.
    Cianfarani, C.
    Ciraolo, G.
    Citrin, J.
    Costea, S.
    Crisanti, F.
    Cruz, N.
    Czarnecka, A.
    Decker, J.
    De Masi, G.
    De Tommasi, G.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (08)
  • [6] Nitrogen-seeded divertor detachment in TCV L-mode plasmas
    Fevrier, O.
    Theiler, C.
    Harrison, J. R.
    Tsui, C. K.
    Verhaegh, K.
    Wuethrich, C.
    Boedo, J. A.
    De Oliveira, H.
    Duval, B. P.
    Labit, B.
    Lipschultz, B.
    Maurizio, R.
    Reimerdes, H.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (03)
  • [7] Analysis of wall-embedded Langmuir probe signals in different conditions on the Tokamak a Configuration Variable
    Fevrier, O.
    Theiler, C.
    De Oliveira, H.
    Labit, B.
    Fedorczak, N.
    Baillod, A.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (05)
  • [8] Comparison of detached and radiative divertor operation in Alcator C-Mod
    Goetz, JA
    Kurz, C
    LaBombard, B
    Lipschultz, B
    Niemczewski, A
    McCracken, GM
    Terry, JL
    Boivin, RL
    Bombarda, F
    Bonoli, P
    Fiore, C
    Golovato, S
    Granetz, R
    Greenwald, M
    Horne, S
    Hubbard, A
    Hutchinson, I
    Irby, J
    Marmar, E
    Porkolab, M
    Rice, J
    Snipes, J
    Takase, Y
    Watterson, R
    Welch, B
    Wolfe, S
    Christensen, C
    Garnier, D
    Jablonski, D
    Lo, D
    Lumma, D
    May, M
    Mazurenko, A
    Nachtrieb, R
    OShea, P
    Reardon, J
    Rost, J
    Schachter, J
    Sorci, J
    Stek, P
    Umansky, M
    Wang, Y
    [J]. PHYSICS OF PLASMAS, 1996, 3 (05) : 1908 - 1915
  • [9] Power exhaust and core-divertor compatibility of the baffled snowflake divertor in TCV
    Gorno, S.
    Colandrea, C.
    Fevrier, O.
    Reimerdes, H.
    Theiler, C.
    Duval, B. P.
    Lunt, T.
    Raj, H.
    Sheikh, U. A.
    Simons, L.
    Thornton, A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (03)
  • [10] CREATION AND CONTROL OF VARIABLY SHAPED PLASMAS IN TCV
    HOFMANN, F
    LISTER, JB
    ANTON, M
    BARRY, S
    BEHN, R
    BERNEL, S
    BESSON, G
    BUHLMANN, F
    CHAVAN, R
    CORBOZ, M
    DUTCH, MJ
    DUVAL, BP
    FASEL, D
    FAVRE, A
    FRANKE, S
    HEYM, A
    HIRT, A
    HOLLENSTEIN, C
    ISOZ, P
    JOYE, B
    LLOBET, X
    MAGNIN, JC
    MARLETAZ, B
    MARMILLOD, P
    MARTIN, Y
    MAYOR, JM
    MORET, JM
    NIESWAND, C
    PARIS, PJ
    PEREZ, A
    PIETRZYK, ZA
    PITTS, RA
    POCHELON, A
    RAGE, R
    SAUTER, O
    TONETTI, G
    TRAN, MQ
    TROYON, F
    WARD, DJ
    WEISEN, H
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (12B) : B277 - B287