Joint Client-and-Sample Selection for Federated Learning via Bi-Level Optimization

被引:0
|
作者
Li, Anran [1 ]
Wang, Guangjing [2 ]
Hu, Ming [3 ]
Sun, Jianfei [3 ]
Zhang, Lan [4 ]
Tuan, Luu Anh [5 ]
Yu, Han [5 ]
机构
[1] Yale Univ, Sch Med, Dept Biomed Informat & Data Sci, New Haven, CT 06520 USA
[2] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[3] Singapore Management Univ, Sch Comp & Informat Syst, Singapore 188065, Singapore
[4] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Peoples R China
[5] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会; 中央高校基本科研业务费专项资金资助; 国家重点研发计划;
关键词
Training; Computational modeling; Data models; Noise measurement; Noise; Optimization; Servers; Bi-level optimization; federated learning; noisy data detection; sample selection;
D O I
10.1109/TMC.2024.3455331
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) enables massive local data owners to collaboratively train a deep learning model without disclosing their private data. The importance of local data samples from various data owners to FL models varies widely. This is exacerbated by the presence of noisy data that exhibit large losses similar to important (hard) samples. Currently, there lacks an FL approach that can effectively distinguish hard samples (which are beneficial) from noisy samples (which are harmful). To bridge this gap, we propose the joint Federated Meta-Weighting based Client and Sample Selection (FedMW-CSS) approach to simultaneously mitigate label noise and hard sample selection. It is a bilevel optimization approach for FL client-and-sample selection and global model construction to achieve hard sample-aware noise-robust learning in a privacy preserving manner. It performs meta-learning based online approximation to iteratively update global FL models, select the most positively influential samples and deal with training data noise. To utilize both the instance-level information and class-level information for better performance improvements, FedMW-CSS efficiently learns a class-level weight by manipulating gradients at the class level, e.g., it performs a gradient descent step on class-level weights, which only relies on intermediate gradients. Theoretically, we analyze the privacy guarantees and convergence of FedMW-CSS. Extensive experiments comparison against eight state-of-the-art baselines on six real-world datasets in the presence of data noise and heterogeneity shows that FedMW-CSS achieves up to 28.5% higher test accuracy, while saving communication and computation costs by at least 49.3% and 1.2%, respectively.
引用
收藏
页码:15196 / 15209
页数:14
相关论文
共 50 条
  • [1] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [2] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197
  • [3] Client Selection for Wireless Federated Learning With Data and Latency Heterogeneity
    Chen, Xiaobing
    Zhou, Xiangwei
    Zhang, Hongchao
    Sun, Mingxuan
    Vincent Poor, H.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (19): : 32183 - 32196
  • [4] Efficient Federated Learning via Joint Communication and Computation Optimization
    Wang, Gang
    Zhao, Chenguang
    Qi, Qi
    Han, Rui
    Bai, Lin
    Choi, Jinho
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11580 - 11592
  • [5] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [6] Joint Client Selection and Bandwidth Allocation of Wireless Federated Learning by Deep Reinforcement Learning
    Mao, Wei
    Lu, Xingjian
    Jiang, Yuhui
    Zheng, Haikun
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (01) : 336 - 348
  • [7] Heterogeneous Privacy Level-Based Client Selection for Hybrid Federated and Centralized Learning in Mobile Edge Computing
    Solat, Faranaksadat
    Patni, Sakshi
    Lim, Sunhwan
    Lee, Joohyung
    IEEE ACCESS, 2024, 12 : 108556 - 108572
  • [8] Joint Client Selection and Bandwidth Allocation Algorithm for Federated Learning
    Ko, Haneul
    Lee, Jaewook
    Seo, Sangwon
    Pack, Sangheon
    Leung, Victor C. M.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (06) : 3380 - 3390
  • [9] FedAEB: Deep Reinforcement Learning Based Joint Client Selection and Resource Allocation Strategy for Heterogeneous Federated Learning
    Zheng, Feng
    Sun, Yuze
    Ni, Bin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (06) : 8835 - 8846
  • [10] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694