Deep Learning-Driven Anomaly Detection for IoMT-Based Smart Healthcare Systems

被引:0
|
作者
Khan, Attiya [1 ]
Rizwan, Muhammad [2 ]
Bagdasar, Ovidiu [2 ,3 ]
Alabdulatif, Abdulatif [4 ]
Alamro, Sulaiman [4 ]
Alnajim, Abdullah [5 ]
机构
[1] Kinnaird Coll Women, Dept Comp Sci, Lahore 54000, Pakistan
[2] Univ Derby, Sch Comp, Derby DE221GB, England
[3] 1 Decembrie 1918 Univ Alba Iulia, Fac Exact Sci, Dept Math, Alba Iulia 510009, Romania
[4] Qassim Univ, Coll Comp, Dept Comp Sci, Buraydah 52571, Saudi Arabia
[5] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah 52571, Saudi Arabia
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2024年 / 141卷 / 03期
关键词
Anomaly detection; deep learning; Internet of Things (IoT); health care; INTERNET; PRIVACY; SECURE;
D O I
10.32604/cmes.2024.054380
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Internet of Medical Things (IoMT) is an emerging technology that combines the Internet of Things (IoT) into the healthcare sector, which brings remarkable benefits to facilitate remote patient monitoring and reduce treatment costs. As IoMT devices become more scalable, Smart Healthcare Systems (SHS) have become increasingly vulnerable to cyberattacks. Intrusion Detection Systems (IDS) play a crucial role in maintaining network security. An IDS monitors systems or networks for suspicious activities or potential threats, safeguarding internal networks. This paper presents the development of an IDS based on deep learning techniques utilizing benchmark datasets. We propose a multilayer perceptron-based framework for intrusion detection within the smart healthcare domain. The primary objective of our work is to protect smart healthcare devices and networks from malicious attacks and security risks. We employ the NSL-KDD and UNSW-NB15 intrusion detection datasets to evaluate our proposed security framework. The proposed framework achieved an accuracy of 95.0674%, surpassing that of comparable deep learning models in smart healthcare while also reducing the false positive rate. Experimental results indicate the feasibility of using a multilayer perceptron, achieving superior performance against cybersecurity threats in the smart healthcare domain.
引用
收藏
页码:2121 / 2141
页数:21
相关论文
共 50 条
  • [21] A Perspective Roadmap for IoMT-Based Early Detection and Care of the Neural Disorder, Dementia
    Juneja, Sapna
    Dhiman, Gaurav
    Kautish, Sandeep
    Viriyasitavat, Wattana
    Yadav, Kusum
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [22] Towards a deep learning-driven intrusion detection approach for Internet of Things
    Ge, Mengmeng
    Syed, Naeem Firdous
    Fu, Xiping
    Baig, Zubair
    Robles-Kelly, Antonio
    COMPUTER NETWORKS, 2021, 186
  • [23] Auction-based deep learning-driven smart agricultural supply chain mechanism
    Feng, Yu
    Mei, Dong
    Zhao, Hua
    APPLIED SOFT COMPUTING, 2023, 149
  • [24] A Unified Deep Learning Anomaly Detection and Classification Approach for Smart Grid Environments
    Siniosoglou, Ilias
    Radoglou-Grammatikis, Panagiotis
    Efstathopoulos, Georgios
    Fouliras, Panagiotis
    Sarigiannidis, Panagiotis
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2021, 18 (02): : 1137 - 1151
  • [25] An IoMT-Based Federated and Deep Transfer Learning Approach to the Detection of Diverse Chest Diseases Using Chest X-Rays
    Kakkar, Barkha
    Johri, Prashant
    Kumar, Yogesh
    Park, Hyunwoo
    Son, Youngdoo
    Shafi, Jana
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12
  • [26] A Deep Anomaly Detection System for IoT-Based Smart Buildings
    Cicero, Simona
    Guarascio, Massimo
    Guerrieri, Antonio
    Mungari, Simone
    SENSORS, 2023, 23 (23)
  • [27] IoMT: A COVID-19 Healthcare System Driven by Federated Learning and Blockchain
    Samuel, Omaji
    Omojo, Akogwu Blessing
    Onuja, Abdulkarim Musa
    Sunday, Yunisa
    Tiwari, Prayag
    Gupta, Deepak
    Hafeez, Ghulam
    Yahaya, Adamu Sani
    Fatoba, Oluwaseun Jumoke
    Shamshirband, Shahab
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 823 - 834
  • [28] Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing
    Zhang, Jianjing
    Gao, Robert X.
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2021, 34 (01)
  • [29] Improved bacterial foraging optimization with deep learning based anomaly detection in smart cities
    Khayyat, Manal M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 75 : 407 - 417
  • [30] Deep Learning-Driven Data Curation and Model Interpretation for Smart Manufacturing
    Jianjing Zhang
    Robert X. Gao
    Chinese Journal of Mechanical Engineering, 2021, 34