Garnet-Type Zinc Hexacyanoferrates as Lithium, Sodium, and Potassium Solid Electrolytes

被引:0
作者
Karger, Leonhard [1 ]
Murugan, Saravanakumar [1 ]
Wang, Liping [2 ]
Zhao-Karger, Zhirong [3 ,4 ]
Kondrakov, Aleksandr [1 ,5 ]
Strauss, Florian [1 ]
Brezesinski, Torsten [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Battery & Electrochem Lab BELLA, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Ulm Univ, Inst Organ Chem & Adv Mat 2, Albert Einstein Allee, D-89081 Ulm, Germany
[3] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[4] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Kaiserstr 12, D-76131 Karlsruhe, Germany
[5] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
来源
BATTERIES-BASEL | 2024年 / 10卷 / 10期
关键词
solid-state battery; sodium-ion battery; solid electrolyte; Prussian blue analogue; POLYMER ELECTROLYTE; ION; REMOVAL; RADIONUCLIDES; MOBILITY; CATHODE; NA3SBS4;
D O I
10.3390/batteries10100365
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Sodium-ion batteries offer an attractive alternative to lithium-based chemistries due to the lower cost and abundance of sodium compared to lithium. Using solid electrolytes instead of liquid ones in such batteries may help improve safety and energy density, but they need to combine easy processing with high stability toward the electrodes. Herein, we describe a new class of solid electrolytes that are accessible by room-temperature, aqueous synthesis. The materials exhibit a garnet-type zinc hexacyanoferrate framework with large diffusion channels for alkaline ions. Specifically, they show superionic behavior and allow for facile processing into pellets. We compare the structure, stability, and transport properties of lithium-, sodium-, and potassium-containing zinc hexacyanoferrates and find that Na2Zn3[Fe(CN)6]2 achieves the highest ionic conductivity of up to 0.21 mS/cm at room temperature. In addition, the electrochemical performance and stability of the latter solid electrolyte are examined in solid-state sodium-ion batteries.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes
    Krauskopf, Thorben
    Dippel, Rabea
    Hartmann, Hannah
    Peppler, Klaus
    Mogwitz, Boris
    Richter, Felix H.
    Zeier, Wolfgang G.
    Janek, Juergen
    JOULE, 2019, 3 (08) : 2030 - 2049
  • [2] Multi-substituted garnet-type electrolytes for solid-state lithium batteries
    Song, Shufeng
    Wu, Yongmin
    Dong, Zhencai
    Deng, Fan
    Tang, Weiping
    Yao, Jianyao
    Wen, Zhaoyin
    Lu, Li
    Hu, Ning
    Molenda, Janina
    CERAMICS INTERNATIONAL, 2020, 46 (04) : 5489 - 5494
  • [3] All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes
    Du, Fuming
    Zhao, Ning
    Li, Yiqiu
    Chen, Cheng
    Liu, Ziwei
    Guo, Xiangxin
    JOURNAL OF POWER SOURCES, 2015, 300 : 24 - 28
  • [4] Amorphous Phase Induced Lithium Dendrite Suppression in Glass-Ceramic Garnet-Type Solid Electrolytes
    Hoinkis, Nina
    Schuhmacher, Joerg
    Fuchs, Till
    Leukel, Sebastian
    Loho, Christoph
    Roters, Andreas
    Richter, Felix H.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (23) : 28692 - 28704
  • [5] Conductivity of Garnet-type Lithium Lanthanum Zirconate Based Composite Electrolytes
    Zhang, Xingxing
    Fergus, Jeffrey W.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 1531 - 1537
  • [6] Oriented Attachment Strategy Toward Enhancing Ionic Conductivity in Garnet-Type Electrolytes for Solid-State Lithium Batteries
    Qin, Zhiwei
    Xie, Yuming
    Meng, Xiangchen
    Qian, Delai
    Li, Junchen
    Li, Chun
    Cao, Jian
    Wan, Long
    Huang, Yongxian
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) : 34385 - 34396
  • [7] Influence of cold sintering process on the structure and properties of garnet-type solid electrolytes
    Wang, Xinchao
    Wang, Jinzhu
    Li, Fuzhen
    Zhu, Feng
    Ma, Cheng
    CERAMICS INTERNATIONAL, 2020, 46 (11) : 18544 - 18550
  • [8] Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium, metal
    Sudo, R.
    Nakata, Y.
    Ishiguro, K.
    Matsui, M.
    Hirano, A.
    Takeda, Y.
    Yamamoto, O.
    Imanishi, N.
    SOLID STATE IONICS, 2014, 262 : 151 - 154
  • [9] Research Progresses of Garnet-Type Solid Electrolytes for Developing All-Solid-State Li Batteries
    Kim, Abin
    Woo, Seungjun
    Kang, Minseok
    Park, Heetaek
    Kang, Byoungwoo
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [10] Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries
    Inada, Ryoji
    Yasuda, Satoshi
    Tojo, Masaru
    Tsuritani, Keiji
    Tojo, Tomohiro
    Sakurai, Yoji
    FRONTIERS IN ENERGY RESEARCH, 2016, 4 (JUL)