YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for Underwater Target Detection

被引:1
作者
Li, Zhichuang [1 ]
Xie, Haijun [1 ,2 ]
Feng, Jingyi [1 ]
Wang, Zhenbo [1 ]
Yuan, Zizhao [1 ]
机构
[1] Beijing Inst Technol, Zhuhai 519088, Peoples R China
[2] Guangdong Prov Lab Lingnan Modern Agr Sci & Techno, Heyuan Branch, Heyuan 517000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Computational modeling; Accuracy; Head; Adaptation models; Neck; Computational efficiency; Object detection; Underwater target detection; YOLOv7-PE; efficient decoupled head; anchor-free; CSPSPPF; CBAM;
D O I
10.1109/ACCESS.2024.3417322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In underwater target detection tasks, challenges such as image blurring, complex backgrounds, and aggregation of small targets lead to problems such as difficulty in model feature extraction, target leakage, and false detection. In order to improve the accuracy, real-time performance and lightweight of underwater target detection models, we propose YOLOv7-PE: an accurate and efficient YOLOv7 improved model for underwater target detection.YOLOv7-PE is based on the single-stage target detection model YOLOv7 and separates the classification and regression tasks to be processed separately by decoupling the header design to enhance the feature extraction. We also introduce an anchor-free based design, which simplifies the target detection process, reduces the prediction time, and can adapt to targets in underwater environments. And to improve the computational efficiency, we introduce the CSPSPPF module, which reduces the computational cost of the model and improves the inference speed. In addition, we introduce the CBAM attention mechanism to enhance the feature representation in both channel and spatial dimensions. Through extensive qualitative and quantitative analyses, we verified that YOLOv7-PE has higher detection accuracy and efficient performance on the task of target detection in complex underwater environments. Relative to YOLOv7, the the average detection accuracy(mAP) of YOLOv7-PE is improved by 1.23%. Meanwhile, the Frames Per Second(FPS) of the model is improved by 1.52%, while the amount of model parameters is reduced by 6.78%. Our YOLOv7-PE model performs more accurately as well as efficiently compared to other classical target detection models.
引用
收藏
页码:133937 / 133951
页数:15
相关论文
共 50 条
  • [21] YOLOv7-PSAFP: Crop pest and disease detection based on improved YOLOv7
    Du, Lujia
    Zhu, Junlong
    Liu, Muhua
    Wang, Lin
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [22] NAM-YOLOV7: An Improved YOLOv7 Based on Attention Model for Animal Death Detection
    Sirisha, Uddagiri
    Chandana, Bolem Sai
    Harikiran, Jonnadula
    TRAITEMENT DU SIGNAL, 2023, 40 (02) : 783 - 789
  • [23] Improved YOLOv7 Target Detection Algorithm Based on UAV Aerial Photography
    Bai, Zhen
    Pei, Xinbiao
    Qiao, Zheng
    Wu, Guangxin
    Bai, Yue
    DRONES, 2024, 8 (03)
  • [24] YOLOv7F: Enhanced YOLOv7 With Guided Feature Fusion
    Kim, Haemoon
    Park, Seonghyun
    Kim, Hyunhak
    Ahn, Jongsik
    Lee, Tae-Young
    Ha, Yunchul
    Choi, Byungin
    IEEE ACCESS, 2024, 12 : 169487 - 169498
  • [25] Enhanced Campus Security Target Detection Using a Refined YOLOv7 Approach
    Cao, Fengyun
    Ma, Shuai
    TRAITEMENT DU SIGNAL, 2023, 40 (05) : 2267 - 2273
  • [26] Research on Improved YOLOv7 for Traffic Obstacle Detection
    Yang, Yifan
    Cui, Song
    Xiang, Xuan
    Bai, Yuxing
    Zang, Liguo
    Ding, Hongshan
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (01):
  • [27] Mask wearing detection based on improved YOLOv7
    Fu Hui-chen
    Gao Jun-wei
    Che Lu-yang
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (08) : 1139 - 1147
  • [28] Smoke and Fire Detection Based on YOLOv7 With Convolutional Structure Reparameterization and Lightweighting
    Hu, Junjie
    He, Yun
    Zeng, Ming
    Qian, Yingjing
    Zhang, Renmin
    IEEE SENSORS LETTERS, 2024, 8 (08)
  • [29] Driver fatigue detection based on improved YOLOv7
    Li, Xianguo
    Li, Xueyan
    Shen, Zhenqian
    Qian, Guangmin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (03)
  • [30] Lightweight YOLOv7 for bushing surface defects detection
    Cheng, Wenjun
    Zeng, Pengfei
    Hao, Yongping
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)