Measuring Bipartite Spin Correlations of Lattice-Trapped Dipolar Atoms

被引:0
作者
Alaoui, Youssef Aziz [1 ,2 ]
Muleady, Sean R. [3 ,4 ,5 ,6 ,7 ,8 ]
Chaparro, Edwin [3 ,4 ,5 ]
Trifa, Youssef [9 ]
Rey, Ana Maria [3 ,4 ,5 ]
Roscilde, Tommaso [9 ]
Laburthe-Tolra, Bruno [1 ,2 ]
Vernac, Laurent [1 ,2 ]
机构
[1] Univ Sorbonne Paris Nord, Lab Phys Lasers, F-93430 Villetaneuse, France
[2] CNRS, UMR 7538, LPL, F-93430 Villetaneuse, France
[3] Univ Colorado, JILA, NIST, Boulder, CO USA
[4] Univ Colorado, Dept Phys, Boulder, CO USA
[5] Univ Colorado, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[6] NIST, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[7] Univ Maryland, College Pk, MD 20742 USA
[8] NIST, Joint Quantum Inst, College Pk, MD 20742 USA
[9] Univ Lyon, Ens Lyon, CNRS, Lab Phys, F-69342 Lyon, France
关键词
ENTANGLEMENT ENTROPY; QUANTUM; THERMALIZATION; DYNAMICS;
D O I
10.1103/PhysRevLett.133.203401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a bipartition technique using a superlattice architecture to access correlations between alternating planes of a mesoscopic array of spin-3 chromium atoms trapped in a 3D optical lattice. Using this method, we observe that out-of-equilibrium dynamics driven by long-range dipolar interactions lead to spin anticorrelations between the two spatially separated subsystems. Our bipartite measurements reveal a subtle interplay between the anisotropy of the 3D dipolar interactions and that of the lattice structure, without requiring single-site addressing. We compare our results to theoretical predictions based on a truncated cumulant expansion and a new cluster semiclassical method that we use to investigate correlations at the microscopic scale. Comparison with a high-temperature analytical model reveals quantum thermalization at a high negative spin temperature.
引用
收藏
页数:6
相关论文
共 67 条
  • [1] Horodecki R., Horodecki P., Horodecki M., Horodecki K., Rev. Mod. Phys, 81, (2009)
  • [2] Cavalcanti D., Skrzypczyk P., Rep. Prog. Phys, 80, (2016)
  • [3] Brunner N., Cavalcanti D., Pironio S., Scarani V., Wehner S., Rev. Mod. Phys, 86, (2014)
  • [4] Hosur P., Qi X.-L., Roberts D. A., Yoshida B., J. High Energy Phys, 2016
  • [5] Styliaris G., Anand N., Zanardi P., Phys. Rev. Lett, 126, (2021)
  • [6] Poilblanc D., Phys. Rev. B, 84, (2011)
  • [7] Luca D'Alessio A. P., Kafri Yariv, Rigol M., Adv. Phys, 65, (2016)
  • [8] Mori T., Ikeda T. N., Kaminishi E., Ueda M., J. Phys. B, 51, (2018)
  • [9] Islam R., Ma R., Preiss P. M., Eric Tai M., Lukin A., Rispoli M., Greiner M., Nature (London), 528, (2015)
  • [10] Brydges T., Elben A., Jurcevic P., Vermersch B., Maier C., Lanyon B. P., Zoller P., Blatt R., Roos C. F., Science, 364, (2019)