Error analysis of a fully discrete method for time-fractional diffusion equations with a tempered fractional Gaussian noise

被引:2
作者
Liu, Xing [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, Huangshi 435002, Peoples R China
关键词
Caputo fractional derivative; Wright function; Covariance function; Spectral Galerkin method; Gr & uuml; nwald-Letnikov formula; Error estimates; CONVERGENCE; DRIVEN; APPROXIMATION; SCHEME; ORDER;
D O I
10.1016/j.cam.2024.115953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyze a fully discrete method, in order to solve numerically time-fractional diffusion equations driven by additive tempered fractional Gaussian noise. The stochastic model involves a Caputo fractional derivative of order a E (0, 1) . We discuss the regularity results of the solution by using the inversion of Laplace transform, the Wright function and covariance function of stochastic process. A spectral Galerkin method is applied to approximate the stochastic model in space. Time discretization is achieved by using firstly a Riemann-Liouville derivative to reformulate the spatial semi-discrete form, and then applying the Gr & uuml;nwald- Letnikov formula. We derive the error estimates of the discrete methods, based on regularity results of the solution. Finally, extensive numerical experiments are presented to confirm our theoretical analysis.
引用
收藏
页数:19
相关论文
共 30 条
  • [1] Tempered fractional Brownian motion: Wavelet estimation, modeling and testing
    Boniece, B. Cooper
    Didier, Gustavo
    Sabzikar, Farzad
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 51 : 461 - 509
  • [2] Two fast numerical methods for a generalized Oldroyd-B fluid model
    Bu, Weiping
    Yang, Huimin
    Tang, Yifa
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [3] A Fourier method for the fractional diffusion equation describing sub-diffusion
    Chen, Chang-Ming
    Liu, F.
    Turner, I.
    Anh, V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 886 - 897
  • [4] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696
  • [5] A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications
    Gao, Guang-hua
    Sun, Zhi-zhong
    Zhang, Hong-wei
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 259 : 33 - 50
  • [6] SHARP CONVERGENCE RATES OF TIME DISCRETIZATION FOR STOCHASTIC TIME-FRACTIONAL PDES SUBJECT TO ADDITIVE SPACE-TIME WHITE NOISE
    Gunzburger, Max
    Li, Buyang
    Wang, Jilu
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (318) : 1715 - 1741
  • [7] Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise
    Gunzburger, Max
    Li, Buyang
    Wang, Jilu
    [J]. NUMERISCHE MATHEMATIK, 2019, 141 (04) : 1043 - 1077
  • [8] Weak convergence of the L1 scheme for a stochastic subdiffusion problem driven by fractionally integrated additive noise
    Hu, Ye
    Li, Changpin
    Yan, Yubin
    [J]. APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 192 - 215
  • [9] NUMERICAL APPROXIMATION OF STOCHASTIC TIME-FRACTIONAL DIFFUSION
    Jin, Bangti
    Yan, Yubin
    Zhou, Zhi
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (04): : 1245 - 1268
  • [10] TWO FULLY DISCRETE SCHEMES FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS WITH NONSMOOTH DATA
    Jin, Bangti
    Lazarov, Raytcho
    Zhou, Zhi
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01) : A146 - A170