Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties

被引:1
作者
Hernandez-Sanchez, M. [1 ]
Tapia-Labra, G. [1 ]
Mendez-Bermudez, J. A. [1 ,2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[2] Univ Nacl Autonoma Honduras, Escuela Fis, Fac Ciencias, Tegucigalpa, Honduras
关键词
DENSITY-OF-STATES; INVERSE PARTICIPATION RATIO; EIGENVALUE DISTRIBUTION; CHARACTERISTIC VECTORS; STATISTICAL PROPERTIES; BORDERED MATRICES; LYAPUNOV SPECTRA; LEVEL STATISTICS; LOCALIZATION; ENSEMBLES;
D O I
10.1103/PhysRevE.110.044124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Here we introduce the non-Hermitian diluted banded random matrix (nHdBRM) ensemble as the set of N x N real nonsymmetric matrices whose entries are independent Gaussian random variables with zero mean and variance one if | i - j| < b and zero otherwise, moreover off-diagonal matrix elements within the bandwidth b are randomly set to zero such that the sparsity alpha is defined as the fraction of the N ( b - 1)/2 independent nonvanishing off-diagonal matrix elements. By means of a detailed numerical study we demonstrate that the eigenfunction and spectral properties of the nHdBRM ensemble scale with the parameter x = gamma [(b alpha)(2)/N](delta) , where gamma, delta similar to 1. Moreover, the normalized localization length beta of the eigenfunctions follows a simple scaling law: beta = x / (1 + x ). For comparison purposes, we also report eigenfunction and spectral properties of the Hermitian diluted banded random matrix ensemble.
引用
收藏
页数:10
相关论文
共 94 条
[1]   Topological versus spectral properties of random geometric graphs [J].
Aguilar-Sanchez, R. ;
Mendez-Bermudez, J. A. ;
Rodrigues, Francisco A. ;
Sigarreta, Jose M. .
PHYSICAL REVIEW E, 2020, 102 (04)
[2]  
[Anonymous], 2011, The Oxford Handbook of Random Matrix Theory
[3]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[4]   THE CIRCULAR LAW FOR SPARSE NON-HERMITIAN MATRICES [J].
Basak, Anirban ;
Rudelson, Mark .
ANNALS OF PROBABILITY, 2019, 47 (04) :2359-2416
[5]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[6]   Review of the k-body embedded ensembles of Gaussian random matrices [J].
Benet, L ;
Weidenmüller, HA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3569-3593
[7]   ON THE LEVEL DENSITY OF RANDOM BAND MATRICES [J].
BOGACHEV, LV ;
MOLCHANOV, SA ;
PASTUR, LA .
MATHEMATICAL NOTES, 1991, 50 (5-6) :1232-1242
[8]  
Cao X., arXiv
[9]   Genuine localization transition in a long-range hopping model [J].
Cao, Xiangyu ;
Rosso, Alberto ;
Bouchaud, Jean-Philippe ;
Le Doussal, Pierre .
PHYSICAL REVIEW E, 2017, 95 (06)
[10]   SPECTRAL PORTRAIT FOR NON-HERMITIAN LARGE SPARSE MATRICES [J].
CARPRAUX, JF ;
ERHEL, J ;
SADKANE, M .
COMPUTING, 1994, 53 (3-4) :301-310